000292503 001__ 292503
000292503 005__ 20241015132357.0
000292503 0247_ $$2doi$$a10.1002/acm2.14491
000292503 0247_ $$2pmid$$apmid:39194180
000292503 037__ $$aDKFZ-2024-01750
000292503 041__ $$aEnglish
000292503 082__ $$a530
000292503 1001_ $$aBelikhin, Mikhail A$$b0
000292503 245__ $$aHigh-speed bioimpedance-based gating system for radiotherapy: Prototype and proof of principle.
000292503 260__ $$aReston, Va.$$bACMP$$c2024
000292503 3367_ $$2DRIVER$$aarticle
000292503 3367_ $$2DataCite$$aOutput Types/Journal article
000292503 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1728991390_4973
000292503 3367_ $$2BibTeX$$aARTICLE
000292503 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000292503 3367_ $$00$$2EndNote$$aJournal Article
000292503 500__ $$a#LA:E041# / 2024 Oct;25(10):e14491 / Technical Note
000292503 520__ $$aTo investigate a novel bioimpedance-based respiratory gating system (BRGS) designed for external beam radiotherapy and to evaluate its technical characteristics in comparison with existing similar systems.The BRGS was tested on three healthy volunteers in free breathing and breath-hold patterns under laboratory conditions. Its parameters, including the time delay (TD) between the actual impedance change and the gating signal, temperature drift, root mean square (RMS) noise, and signal-to-noise ratio (SNR), were measured and analyzed.The gate-on TD and the gate-off TD were found to be 9.0 ± 2.0 ms [mean ± standard deviation (M ± SD)] and 7.2 ± 1.3 ms, respectively. The temperature drift of the BRGS output signal was 0.02 Ω after 30 min of operation. RMS noise averaged 0.14 ± 0.05 Ω (M ± SD) for all subjects and varied from 0.08 to 0.20 Ω with repeated measurements. A significant difference in SNR (p < 0.001) was observed between subjects, ranging from 4 to 15.The evaluated bioimpedance-based gating system showed a high performance in real-time respiratory monitoring and may potentially be used as an external surrogate guidance for respiratory-gated external beam radiotherapy. Direct comparison with commercially available systems, 4D correlation studies, and expansion of the patient sample are goals for future preclinical studies.
000292503 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000292503 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000292503 650_7 $$2Other$$arespiratory gated radiotherapy
000292503 650_7 $$2Other$$athoracic bioimpedance
000292503 650_7 $$2Other$$atumor motion
000292503 7001_ $$aChernyaev, Alexander P$$b1
000292503 7001_ $$0P:(DE-He78)0704701d58e3a0d5f45fbd1018d5aa77$$aPryanichnikov, Alexander$$b2$$eLast author$$udkfz
000292503 773__ $$0PERI:(DE-600)2010347-5$$a10.1002/acm2.14491$$gp. e14491$$n10$$pe14491$$tJournal of applied clinical medical physics$$v25$$x1526-9914$$y2024
000292503 909CO $$ooai:inrepo02.dkfz.de:292503$$pVDB
000292503 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0704701d58e3a0d5f45fbd1018d5aa77$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000292503 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000292503 9141_ $$y2024
000292503 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL CLIN MED PHYS : 2022$$d2023-10-22
000292503 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
000292503 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
000292503 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-22
000292503 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-01-03T20:18:43Z
000292503 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-01-03T20:18:43Z
000292503 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double anonymous peer review$$d2023-01-03T20:18:43Z
000292503 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2023-01-03T20:18:43Z
000292503 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
000292503 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
000292503 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
000292503 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
000292503 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-22
000292503 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-22
000292503 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-22
000292503 9202_ $$0I:(DE-He78)E041-20160331$$kE041$$lMed. Physik in der Radioonkologie$$x0
000292503 9201_ $$0I:(DE-He78)E041-20160331$$kE041$$lMed. Physik in der Radioonkologie$$x0
000292503 980__ $$ajournal
000292503 980__ $$aVDB
000292503 980__ $$aI:(DE-He78)E041-20160331
000292503 980__ $$aUNRESTRICTED