000292524 001__ 292524
000292524 005__ 20241002155845.0
000292524 0247_ $$2doi$$a10.1016/j.jbc.2024.107724
000292524 0247_ $$2pmid$$apmid:39214299
000292524 0247_ $$2ISSN$$a0021-9258
000292524 0247_ $$2ISSN$$a1067-8816
000292524 0247_ $$2ISSN$$a1083-351X
000292524 037__ $$aDKFZ-2024-01770
000292524 041__ $$aEnglish
000292524 082__ $$a540
000292524 1001_ $$aRoyet, Adrien$$b0
000292524 245__ $$aNonstructural protein 4 of human norovirus self-assembles into various membrane-bridging multimers.
000292524 260__ $$aBethesda, Md.$$bSoc.$$c2024
000292524 3367_ $$2DRIVER$$aarticle
000292524 3367_ $$2DataCite$$aOutput Types/Journal article
000292524 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1727877488_24786
000292524 3367_ $$2BibTeX$$aARTICLE
000292524 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000292524 3367_ $$00$$2EndNote$$aJournal Article
000292524 500__ $$aVolume 300, Issue 9, September 2024, 107724 / Core Facility Antibodies
000292524 520__ $$aSingle-stranded, positive-sense RNA ((+)RNA) viruses replicate their genomes in virus-induced intracellular membrane compartments. (+)RNA viruses dedicate a significant part of their small genomes (a few thousands to a few tens of thousands of bases) to the generation of these compartments by encoding membrane-interacting proteins and/or protein domains. Noroviruses are a very diverse genus of (+)RNA viruses including human and animal pathogens. Human noroviruses are the major cause of acute gastroenteritis worldwide, with genogroup II genotype 4 (GII.4) noroviruses accounting for the vast majority of infections. Three viral proteins encoded in the N-terminus of the viral replication polyprotein direct intracellular membrane rearrangements associated with norovirus replication. Of these three, nonstructural protein 4 (NS4) seems to be the most important, although its exact functions in replication organelle formation are unknown. Here we produce, purify and characterize GII.4 NS4. AlphaFold modeling combined with experimental data refine and correct our previous crude structural model of NS4. Using simple artificial liposomes, we report an extensive characterization of the membrane properties of NS4. We find that NS4 self-assembles and thereby bridges liposomes together. Cryo-EM, NMR and membrane flotation show formation of several distinct NS4 assemblies, at least two of them bridging pairs of membranes together in different fashions. Noroviruses belong to (+)RNA viruses whose replication compartment is extruded from the target endomembrane and generates double-membrane vesicles. Our data establish that the 21-kDa GII.4 human norovirus NS4 can, in the absence of any other factor, recapitulate in tubo several features, including membrane apposition, that occur in such processes.
000292524 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000292524 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000292524 650_7 $$2Other$$aCryo-electron microscopy
000292524 650_7 $$2Other$$aLipid-protein interaction
000292524 650_7 $$2Other$$aLiposome
000292524 650_7 $$2Other$$aMembrane
000292524 650_7 $$2Other$$aNonstructural protein
000292524 650_7 $$2Other$$aNorovirus
000292524 650_7 $$2Other$$aPlus-stranded RNA virus
000292524 650_7 $$2Other$$aProtein assembly
000292524 650_7 $$2Other$$aViral protein
000292524 650_7 $$2Other$$aViral replication
000292524 7001_ $$aRuedas, Rémi$$b1
000292524 7001_ $$aGargowitsch, Laetitia$$b2
000292524 7001_ $$aGervais, Virginie$$b3
000292524 7001_ $$aHabersetzer, Johann$$b4
000292524 7001_ $$aPieri, Laura$$b5
000292524 7001_ $$aOuldali, Malika$$b6
000292524 7001_ $$aPaternostre, Maïté$$b7
000292524 7001_ $$0P:(DE-He78)0c4543046185361a644540fee0dad8b1$$aHofmann, Ilse$$b8$$udkfz
000292524 7001_ $$aTubiana, Thibault$$b9
000292524 7001_ $$aFieulaine, Sonia$$b10
000292524 7001_ $$aBressanelli, Stéphane$$b11
000292524 773__ $$0PERI:(DE-600)1474604-9$$a10.1016/j.jbc.2024.107724$$gp. 107724 -$$p 107724$$tThe journal of biological chemistry$$v300$$x0021-9258$$y2024
000292524 909CO $$ooai:inrepo02.dkfz.de:292524$$pVDB
000292524 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0c4543046185361a644540fee0dad8b1$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000292524 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000292524 9141_ $$y2024
000292524 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOL CHEM : 2019$$d2021-05-04
000292524 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000292524 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000292524 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000292524 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000292524 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000292524 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000292524 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-05-04
000292524 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000292524 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04
000292524 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000292524 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000292524 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000292524 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000292524 9201_ $$0I:(DE-He78)A190-20160331$$kA190$$lA190 Vaskuläre Onkologie und Metastasierung$$x0
000292524 980__ $$ajournal
000292524 980__ $$aVDB
000292524 980__ $$aI:(DE-He78)A190-20160331
000292524 980__ $$aUNRESTRICTED