001     292539
005     20241110013700.0
024 7 _ |a 10.1158/1078-0432.CCR-24-1152
|2 doi
024 7 _ |a pmid:39207225
|2 pmid
024 7 _ |a 1078-0432
|2 ISSN
024 7 _ |a 1557-3265
|2 ISSN
024 7 _ |a altmetric:169027116
|2 altmetric
037 _ _ |a DKFZ-2024-01782
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Heinst, Lorena
|0 0000-0002-6855-2982
|b 0
245 _ _ |a Exploiting WEE1 kinase activity as FUS::DDIT3-dependent therapeutic vulnerability in myxoid liposarcoma.
260 _ _ |a Philadelphia, Pa. [u.a.]
|c 2024
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1730707373_16201
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2024 Nov 1;30(21):4974-4986
520 _ _ |a The pathognomonic FUS::DDIT3 fusion protein drives myxoid liposarcoma (MLS) tumorigenesis via aberrant transcriptional activation of oncogenic signaling. Since FUS::DDIT3 has so far not been pharmacologically tractable to selectively target MLS cells, this study investigated the functional role of the cell cycle regulator WEE1 as novel FUS::DDIT3‑dependent therapeutic vulnerability in MLS.Immunohistochemical evaluation of the cell cycle regulator WEE1 was performed in a large cohort of MLS specimens. FUS::DDIT3 dependency and biological function of the G1/S cell cycle checkpoint were analyzed in a mesenchymal stem cell model and liposarcoma cell lines in vitro. WEE1 activity was modulated by RNAi‑mediated knockdown and the small molecule inhibitor MK-1775 (Adavosertib). An established MLS cell line-based chicken chorioallantoic membrane model was employed for in vivo confirmation.We demonstrate that enhanced WEE1 pathway activity represents a hallmark of FUS::DDIT3‑expressing cell lines as well as MLS tissue specimens and that WEE1 is required for MLS cellular survival in vitro and in vivo. Pharmacologic inhibition of WEE1 activity results in DNA damage accumulation and cell cycle progression forcing cells to undergo apoptotic cell death. In addition, our results uncover FUS::DDIT3-dependent WEE1 expression as an oncogenic survival mechanism to tolerate high proliferation and resulting replication stress in MLS. Fusion protein-driven G1/S cell cycle checkpoint deregulation via overactive Cyclin E/CDK2 complexes thereby contributes to enhanced WEE1 inhibitor sensitivity in MLS.Our preclinical study identifies WEE1-mediated replication stress tolerance as molecular vulnerability in FUS::DDIT3-driven MLS tumorigenesis that could represent a novel target for therapeutic intervention.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Lee, Kwang
|0 P:(DE-He78)1121dc6777ecb3a3e48075bbd16246f2
|b 1
|u dkfz
700 1 _ |a Berthold, Ruth
|0 0000-0001-7918-1657
|b 2
700 1 _ |a Isfort, Ilka
|0 0000-0002-7485-8769
|b 3
700 1 _ |a Wosnig, Svenja
|0 0009-0009-8728-7836
|b 4
700 1 _ |a Kuntze, Anna
|0 0009-0004-0145-6111
|b 5
700 1 _ |a Hafner, Susanne
|0 0000-0003-0663-8382
|b 6
700 1 _ |a Altvater, Bianca
|0 0000-0003-4936-4879
|b 7
700 1 _ |a Rössig, Claudia
|0 0000-0002-8672-5285
|b 8
700 1 _ |a Åman, Pierre
|0 0000-0002-1482-8875
|b 9
700 1 _ |a Wardelmann, Eva
|0 0000-0001-6788-4910
|b 10
700 1 _ |a Scholl, Claudia
|0 P:(DE-He78)2c1a21d1cf5fdc9e297512c9d1354250
|b 11
|u dkfz
700 1 _ |a Hartmann, Wolfgang
|b 12
700 1 _ |a Fröhling, Stefan
|0 P:(DE-He78)f0144d171d26dbedb67c9db1df35629d
|b 13
700 1 _ |a Trautmann, Marcel
|0 0000-0002-5842-1196
|b 14
773 _ _ |a 10.1158/1078-0432.CCR-24-1152
|0 PERI:(DE-600)2036787-9
|n 21
|p 4974-4986
|t Clinical cancer research
|v 30
|y 2024
|x 1078-0432
909 C O |p VDB
|o oai:inrepo02.dkfz.de:292539
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)1121dc6777ecb3a3e48075bbd16246f2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)2c1a21d1cf5fdc9e297512c9d1354250
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)f0144d171d26dbedb67c9db1df35629d
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CLIN CANCER RES : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b CLIN CANCER RES : 2022
|d 2023-08-25
920 1 _ |0 I:(DE-He78)B340-20160331
|k B340
|l Translationale Medizinische Onkologie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
920 1 _ |0 I:(DE-He78)B290-20160331
|k B290
|l Angewandte Funktionelle Genomik
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B340-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)B290-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21