001     292555
005     20250916140810.0
024 7 _ |a 10.2196/58705
|2 doi
024 7 _ |a pmid:39230952
|2 pmid
024 7 _ |a altmetric:166963164
|2 altmetric
037 _ _ |a DKFZ-2024-01798
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Manuilova, Iryna
|0 0009-0005-8821-1471
|b 0
245 _ _ |a Identifications of Similarity Metrics for Patients With Cancer: Protocol for a Scoping Review.
260 _ _ |a Toronto
|c 2024
|b [Verlag nicht ermittelbar]
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725626134_24152
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding the similarities of patients with cancer is essential to advancing personalized medicine, improving patient outcomes, and developing more effective and individualized treatments. It enables researchers to discover important patterns, biomarkers, and treatment strategies that can have a significant impact on cancer research and oncology. In addition, the identification of previously successfully treated patients supports oncologists in making treatment decisions for a new patient who is clinically or molecularly similar to the previous patient.The planned review aims to systematically summarize, map, and describe existing evidence to understand how patient similarity is defined and used in cancer research and clinical care.To systematically identify relevant studies and to ensure reproducibility and transparency of the review process, a comprehensive literature search will be conducted in several bibliographic databases, including Web of Science, PubMed, LIVIVIVO, and MEDLINE, covering the period from 1998 to February 2024. After the initial duplicate deletion phase, a study selection phase will be applied using Rayyan, which consists of 3 distinct steps: title and abstract screening, disagreement resolution, and full-text screening. To ensure the integrity and quality of the selection process, each of these steps is preceded by a pilot testing phase. This methodological process will culminate in the presentation of the final research results in a structured form according to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) flowchart. The protocol has been registered in the Journal of Medical Internet Research.This protocol outlines the methodologies used in conducting the scoping review. A search of the specified electronic databases and after removing duplicates resulted in 1183 unique records. As of March 2024, the review process has moved to the full-text evaluation phase. At this stage, data extraction will be conducted using a pretested chart template.The scoping review protocol, centered on these main concepts, aims to systematically map the available evidence on patient similarity among patients with cancer. By defining the types of data sources, approaches, and methods used in the field, and aligning these with the research questions, the review will provide a foundation for future research and clinical application in personalized cancer care. This protocol will guide the literature search, data extraction, and synthesis of findings to achieve the review's objectives.DERR1-10.2196/58705.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a cancer research
|2 Other
650 _ 7 |a cancer similarity metrics
|2 Other
650 _ 7 |a patient similarity
|2 Other
650 _ 7 |a patient similarity applications
|2 Other
650 _ 7 |a precision medicine
|2 Other
650 _ 7 |a scoping review protocol
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Neoplasms: therapy
|2 MeSH
650 _ 2 |a Research Design
|2 MeSH
650 _ 2 |a Precision Medicine: methods
|2 MeSH
650 _ 2 |a Reproducibility of Results
|2 MeSH
700 1 _ |a Bossenz, Jan
|0 0009-0001-7946-8559
|b 1
700 1 _ |a Weise, Annemarie Bianka
|0 0009-0003-6925-5941
|b 2
700 1 _ |a Boehm, Dominik
|0 0009-0001-2887-7109
|b 3
700 1 _ |a Strantz, Cosima
|0 0009-0007-3980-8233
|b 4
700 1 _ |a Unberath, Philipp
|0 0000-0002-1269-9360
|b 5
700 1 _ |a Reimer, Niklas
|0 0000-0002-0491-3929
|b 6
700 1 _ |a Metzger, Patrick
|0 P:(DE-He78)374d2ab968929c8e96e9c227b676d7ab
|b 7
|u dkfz
700 1 _ |a Pauli, Thomas
|0 0000-0002-8381-6624
|b 8
700 1 _ |a Werle, Silke D
|0 0000-0002-5153-0269
|b 9
700 1 _ |a Schulze, Susann
|0 0000-0002-3856-7956
|b 10
700 1 _ |a Hiemer, Sonja
|0 0009-0004-2886-9485
|b 11
700 1 _ |a Ustjanzew, Arsenij
|0 0000-0002-1014-4521
|b 12
700 1 _ |a Kestler, Hans A
|0 0000-0002-4759-5254
|b 13
700 1 _ |a Busch, Hauke
|b 14
700 1 _ |a Brors, Benedikt
|0 P:(DE-He78)fc949170377b58098e46141d95c72661
|b 15
|u dkfz
700 1 _ |a Christoph, Jan
|0 0000-0003-4369-3591
|b 16
773 _ _ |a 10.2196/58705
|g Vol. 13, p. e58705 -
|0 PERI:(DE-600)2719222-2
|p e58705
|t JMIR Research Protocols
|v 13
|y 2024
|x 1929-0748
856 4 _ |u https://inrepo02.dkfz.de/record/292555/files/preprint-58705-submitted.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/292555/files/preprint-58705-submitted.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:inrepo02.dkfz.de:292555
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)374d2ab968929c8e96e9c227b676d7ab
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)fc949170377b58098e46141d95c72661
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JMIR RES PROTOC : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:53:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:53:44Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2023-04-12T14:53:44Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2023-04-12T14:53:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
920 1 _ |0 I:(DE-He78)M130-20160331
|k M130
|l Clinical Trial Office
|x 0
920 1 _ |0 I:(DE-He78)B330-20160331
|k B330
|l Angewandte Bioinformatik
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)M130-20160331
980 _ _ |a I:(DE-He78)B330-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21