001     292603
005     20250417100333.0
024 7 _ |a 10.1038/s42255-024-01118-4
|2 doi
024 7 _ |a pmid:39251875
|2 pmid
024 7 _ |a altmetric:167134255
|2 altmetric
037 _ _ |a DKFZ-2024-01829
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Buglakova, Elena
|0 0009-0004-9100-314X
|b 0
245 _ _ |a Spatial single-cell isotope tracing reveals heterogeneity of de novo fatty acid synthesis in cancer.
260 _ _ |a [London]
|c 2024
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1727267659_4397
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a DKFZ-ZMBH Alliance / #LA:A410# / 2024 Sep;6(9):1695-1711
520 _ _ |a While heterogeneity is a key feature of cancer, understanding metabolic heterogeneity at the single-cell level remains a challenge. Here we present 13C-SpaceM, a method for spatial single-cell isotope tracing that extends the previously published SpaceM method with detection of 13C6-glucose-derived carbons in esterified fatty acids. We validated 13C-SpaceM on spatially heterogeneous models using liver cancer cells subjected to either normoxia-hypoxia or ATP citrate lyase depletion. This revealed substantial single-cell heterogeneity in labelling of the lipogenic acetyl-CoA pool and in relative fatty acid uptake versus synthesis hidden in bulk analyses. Analysing tumour-bearing brain tissue from mice fed a 13C6-glucose-containing diet, we found higher glucose-dependent synthesis of saturated fatty acids and increased elongation of essential fatty acids in tumours compared with healthy brains. Furthermore, our analysis uncovered spatial heterogeneity in lipogenic acetyl-CoA pool labelling in tumours. Our method enhances spatial probing of metabolic activities in single cells and tissues, providing insights into fatty acid metabolism in homoeostasis and disease.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Ekelöf, Måns
|0 0000-0002-0917-9540
|b 1
700 1 _ |a Schwaiger-Haber, Michaela
|0 0000-0002-2715-753X
|b 2
700 1 _ |a Schlicker, Lisa
|0 P:(DE-He78)e52c8f6ae826320eaf2fb173e162070d
|b 3
|u dkfz
700 1 _ |a Molenaar, Martijn R
|0 0000-0001-5221-608X
|b 4
700 1 _ |a Shahraz, Mohammed
|b 5
700 1 _ |a Stuart, Lachlan
|b 6
700 1 _ |a Eisenbarth, Andreas
|0 0000-0002-1113-9556
|b 7
700 1 _ |a Hilsenstein, Volker
|0 0000-0002-2255-2960
|b 8
700 1 _ |a Patti, Gary J
|0 0000-0002-3748-6193
|b 9
700 1 _ |a Schulze, Almut
|0 P:(DE-He78)94ae391f53fb9285e1b68f9930615af1
|b 10
|e Last author
|u dkfz
700 1 _ |a Snaebjörnsson, Marteinn Thor
|0 P:(DE-He78)7b7131e0870c28d432e48873d295460f
|b 11
|e Last author
|u dkfz
700 1 _ |a Alexandrov, Theodore
|0 0000-0001-9464-6125
|b 12
773 _ _ |a 10.1038/s42255-024-01118-4
|0 PERI:(DE-600)2933873-6
|n 9
|p 1695-1711
|t Nature metabolism
|v 6
|y 2024
|x 2522-5812
856 4 _ |u https://inrepo02.dkfz.de/record/292603/files/s42255-024-01118-4.pdf
856 4 _ |u https://inrepo02.dkfz.de/record/292603/files/s42255-024-01118-4.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:inrepo02.dkfz.de:292603
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)e52c8f6ae826320eaf2fb173e162070d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)94ae391f53fb9285e1b68f9930615af1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)7b7131e0870c28d432e48873d295460f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2024
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-08-19
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT METAB : 2022
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b NAT METAB : 2022
|d 2023-08-19
920 2 _ |0 I:(DE-He78)A410-20160331
|k A410
|l Metabolismus und Microenvironment
|x 0
920 1 _ |0 I:(DE-He78)A410-20160331
|k A410
|l Metabolismus und Microenvironment
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A410-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21