000292609 001__ 292609
000292609 005__ 20250512135114.0
000292609 0247_ $$2doi$$a10.1007/s00259-024-06879-4
000292609 0247_ $$2pmid$$apmid:39256215
000292609 0247_ $$2ISSN$$a1619-7070
000292609 0247_ $$2ISSN$$a1619-7089
000292609 037__ $$aDKFZ-2024-01835
000292609 041__ $$aEnglish
000292609 082__ $$a610
000292609 1001_ $$0P:(DE-He78)96ac0342a3ccf9553e3d4c9da9b821b0$$aPan, Leyun$$b0$$eFirst author$$udkfz
000292609 245__ $$aImpact of different parametric Patlak imaging approaches and comparison with a 2-tissue compartment pharmacokinetic model with a long axial field-of-view (LAFOV) PET/CT in oncological patients.
000292609 260__ $$aHeidelberg [u.a.]$$bSpringer-Verl.$$c2025
000292609 3367_ $$2DRIVER$$aarticle
000292609 3367_ $$2DataCite$$aOutput Types/Journal article
000292609 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737103313_4128
000292609 3367_ $$2BibTeX$$aARTICLE
000292609 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000292609 3367_ $$00$$2EndNote$$aJournal Article
000292609 500__ $$a#EA:E060#LA:E060# / 2025 Jan;52(2):623-637
000292609 520__ $$aThe recently introduced Long-Axial-Field-of-View (LAFOV) PET-CT scanners allow for the first-time whole-body dynamic- and parametric imaging. Primary aim of this study was the comparison of direct and indirect Patlak imaging as well as the comparison of different time frames for Patlak calculation with the LAFOV PET-CT in oncological patients. Secondary aims of the study were lesion detectability and comparison of Patlak analysis with a two-tissue-compartment model (2TCM).50 oncological patients with 346 tumor lesions were enrolled in the study. All patients underwent [18F]FDG PET/CT (skull to upper thigh). Here, the Image-Derived-Input-Function) (IDIF) from the descending aorta was used as the exclusive input function. Four sets of images have been reviewed visually and evaluated quantitatively using the target-to-background (TBR) and contrast-to-noise ratio (CNR): short-time (30 min)-direct (STD) Patlak Ki, short-time (30 min)-indirect (STI) Patlak Ki, long-time (59.25 min)-indirect (LTI) Patlak Ki, and 50-60 min SUV (sumSUV). VOI-based 2TCM was used for the evaluation of tumor lesions and normal tissues and compared with the results of Patlak model.No significant differences were observed between the four approaches regarding the number of tumor lesions. However, we found three discordant results: a true positive liver lesion in all Patlak Ki images, a false positive liver lesion delineated only in LTI Ki which was a hemangioma according to MRI and a true negative example in a patient with an atelectasis next to a lung tumor. STD, STI and LTI Ki images had superior TBR in comparison with sumSUV images (2.9-, 3.3- and 4.3-fold higher respectively). TBR of LTI Ki were significantly higher than STD Ki. VOI-based k3 showed a 21-fold higher TBR than sumSUV. Parameters of different models vary in their differential capability between tumor lesions and normal tissue like Patlak Ki which was better in normal lung and 2TCM k3 which was better in normal liver. 2TCM Ki revealed the highest correlation (r = 0.95) with the LTI Patlak Ki in tumor lesions group and demonstrated the highest correlation with the STD Patlak Ki in all tissues group and normal tissues group (r = 0.93 and r = 0.74 respectively).Dynamic [18F]-FDG with the new LAFOV PET/CT scanner produces Patlak Ki images with better lesion contrast than SUV images, but does not increase the lesion detection rate. The time window used for Patlak imaging plays a more important role than the direct or indirect method. A combination of different models, like Patlak and 2TCM may be helpful in parametric imaging to obtain the best TBR in the whole body in future.
000292609 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000292609 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000292609 650_7 $$2Other$$a2-tissue compartment model
000292609 650_7 $$2Other$$aKinetic modelling
000292609 650_7 $$2Other$$aLong axial field-of-view PET/CT
000292609 650_7 $$2Other$$aPatlak parametric imaging
000292609 650_7 $$2Other$$a[18F]FDG PET/CT
000292609 7001_ $$0P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2$$aSachpekidis, Christos$$b1$$udkfz
000292609 7001_ $$aHassel, Jessica$$b2
000292609 7001_ $$aChristopoulos, Petros$$b3
000292609 7001_ $$0P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDimitrakopoulou-Strauss, Antonia$$b4$$eLast author$$udkfz
000292609 773__ $$0PERI:(DE-600)2098375-X$$a10.1007/s00259-024-06879-4$$n2$$p623-637$$tEuropean journal of nuclear medicine and molecular imaging$$v52$$x1619-7070$$y2025
000292609 8564_ $$uhttps://inrepo02.dkfz.de/record/292609/files/s00259-024-06879-4.pdf
000292609 8564_ $$uhttps://inrepo02.dkfz.de/record/292609/files/s00259-024-06879-4.pdf?subformat=pdfa$$xpdfa
000292609 909CO $$ooai:inrepo02.dkfz.de:292609$$pVDB
000292609 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)96ac0342a3ccf9553e3d4c9da9b821b0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000292609 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000292609 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000292609 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000292609 9141_ $$y2024
000292609 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-23$$wger
000292609 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-23$$wger
000292609 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J NUCL MED MOL I : 2022$$d2023-08-23
000292609 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
000292609 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
000292609 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-23
000292609 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-23
000292609 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
000292609 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
000292609 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
000292609 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-23
000292609 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
000292609 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-23
000292609 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEUR J NUCL MED MOL I : 2022$$d2023-08-23
000292609 9202_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000292609 9201_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000292609 9200_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000292609 980__ $$ajournal
000292609 980__ $$aVDB
000292609 980__ $$aI:(DE-He78)E060-20160331
000292609 980__ $$aUNRESTRICTED