000293327 001__ 293327 000293327 005__ 20250523121147.0 000293327 0247_ $$2doi$$a10.1038/s44319-024-00258-8 000293327 0247_ $$2pmid$$apmid:39285246 000293327 0247_ $$2ISSN$$a1469-221X 000293327 0247_ $$2ISSN$$a1469-3178 000293327 037__ $$aDKFZ-2024-01877 000293327 041__ $$aEnglish 000293327 082__ $$a570 000293327 1001_ $$0P:(DE-He78)54ffbd220f4f40801144e564197dd3d4$$aMan, Ka Hou$$b0$$eFirst author$$udkfz 000293327 245__ $$aSOX10 mediates glioblastoma cell-state plasticity. 000293327 260__ $$aHoboken, NJ [u.a.]$$bWiley$$c2024 000293327 3367_ $$2DRIVER$$aarticle 000293327 3367_ $$2DataCite$$aOutput Types/Journal article 000293327 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1732103303_4248 000293327 3367_ $$2BibTeX$$aARTICLE 000293327 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000293327 3367_ $$00$$2EndNote$$aJournal Article 000293327 500__ $$a#EA:B060#LA:B060# / 2024 Nov;25(11):5113-5140 000293327 520__ $$aPhenotypic plasticity is a cause of glioblastoma therapy failure. We previously showed that suppressing the oligodendrocyte-lineage regulator SOX10 promotes glioblastoma progression. Here, we analyze SOX10-mediated phenotypic plasticity and exploit it for glioblastoma therapy design. We show that low SOX10 expression is linked to neural stem-cell (NSC)-like glioblastoma cell states and is a consequence of temozolomide treatment in animal and cell line models. Single-cell transcriptome profiling of Sox10-KD tumors indicates that Sox10 suppression is sufficient to induce tumor progression to an aggressive NSC/developmental-like phenotype, including a quiescent NSC-like cell population. The quiescent NSC state is induced by temozolomide and Sox10-KD and reduced by Notch pathway inhibition in cell line models. Combination treatment using Notch and HDAC/PI3K inhibitors extends the survival of mice carrying Sox10-KD tumors, validating our experimental therapy approach. In summary, SOX10 suppression mediates glioblastoma progression through NSC/developmental cell-state transition, including the induction of a targetable quiescent NSC state. This work provides a rationale for the design of tumor therapies based on single-cell phenotypic plasticity analysis. 000293327 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0 000293327 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de 000293327 650_7 $$2Other$$aSOX10 000293327 650_7 $$2Other$$aGlioblastoma 000293327 650_7 $$2Other$$aPhenotypic Plasticity 000293327 650_7 $$2Other$$aTherapy Resistance 000293327 650_7 $$2Other$$aTumor Cell Quiescence 000293327 7001_ $$aWu, Yonghe$$b1 000293327 7001_ $$aGao, Zhenjiang$$b2 000293327 7001_ $$0P:(DE-He78)c4c258d44a86b1ab0d1c5d7370a4a916$$aSpreng, Anna-Sophie$$b3$$udkfz 000293327 7001_ $$0P:(DE-He78)4009b389a34f8d3f41368959e7fd8e6a$$aKeding, Sigrun Johanna Elisabeth$$b4 000293327 7001_ $$0P:(DE-He78)1bf78749dde0284a02c44a5153fba925$$aMangei, Jasmin$$b5 000293327 7001_ $$0P:(DE-He78)843808e53ce583be326cf75564db3bdd$$aBoskovic, Pavle$$b6 000293327 7001_ $$0P:(DE-He78)697cb039ca08f3b7e5a2a52dbf020b46$$aMallm, Jan-Philipp$$b7$$udkfz 000293327 7001_ $$0P:(DE-He78)76aeb2431f7458c9261e69c5420390c6$$aLiu, Hai-Kun$$b8$$udkfz 000293327 7001_ $$00000-0003-4920-551X$$aImbusch, Charles D$$b9 000293327 7001_ $$0P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c$$aLichter, Peter$$b10$$udkfz 000293327 7001_ $$0P:(DE-He78)d1939d434dd885fad08106329e3db719$$aRadlwimmer, Bernhard$$b11$$eLast author$$udkfz 000293327 773__ $$0PERI:(DE-600)2025376-X$$a10.1038/s44319-024-00258-8$$n11$$p5113-5140$$tEMBO reports$$v25$$x1469-221X$$y2024 000293327 8564_ $$uhttps://inrepo02.dkfz.de/record/293327/files/man-et-al-sox10-mediates-glioblastoma-cell-state-plasticity-1.pdf 000293327 8564_ $$uhttps://inrepo02.dkfz.de/record/293327/files/man-et-al-sox10-mediates-glioblastoma-cell-state-plasticity-1.pdf?subformat=pdfa$$xpdfa 000293327 8767_ $$8SN-2024-01444-b$$92024-12-05$$d2025-03-28$$eAPC$$jZahlung erfolgt 000293327 909CO $$ooai:inrepo02.dkfz.de:293327$$popenCost$$pOpenAPC$$pVDB 000293327 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)54ffbd220f4f40801144e564197dd3d4$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000293327 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c4c258d44a86b1ab0d1c5d7370a4a916$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000293327 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4009b389a34f8d3f41368959e7fd8e6a$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ 000293327 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1bf78749dde0284a02c44a5153fba925$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ 000293327 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)843808e53ce583be326cf75564db3bdd$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ 000293327 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)697cb039ca08f3b7e5a2a52dbf020b46$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ 000293327 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)76aeb2431f7458c9261e69c5420390c6$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ 000293327 9101_ $$0I:(DE-588b)2036810-0$$60000-0003-4920-551X$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ 000293327 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ 000293327 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d1939d434dd885fad08106329e3db719$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ 000293327 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0 000293327 9141_ $$y2024 000293327 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-24$$wger 000293327 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEMBO REP : 2022$$d2023-10-24 000293327 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24 000293327 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24 000293327 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24 000293327 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24 000293327 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-24 000293327 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24 000293327 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24 000293327 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-24 000293327 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-24 000293327 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24 000293327 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEMBO REP : 2022$$d2023-10-24 000293327 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000293327 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 000293327 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 000293327 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal 000293327 9202_ $$0I:(DE-He78)B060-20160331$$kB060$$lB060 Molekulare Genetik$$x0 000293327 9201_ $$0I:(DE-He78)B060-20160331$$kB060$$lB060 Molekulare Genetik$$x0 000293327 9201_ $$0I:(DE-He78)B330-20160331$$kB330$$lAngewandte Bioinformatik$$x1 000293327 9201_ $$0I:(DE-He78)A240-20160331$$kA240$$lA240 Molekulare Neurogenetik$$x2 000293327 9201_ $$0I:(DE-He78)W192-20160331$$kW192$$lscOpen Lab$$x3 000293327 9200_ $$0I:(DE-He78)B060-20160331$$kB060$$lB060 Molekulare Genetik$$x0 000293327 980__ $$ajournal 000293327 980__ $$aVDB 000293327 980__ $$aI:(DE-He78)B060-20160331 000293327 980__ $$aI:(DE-He78)B330-20160331 000293327 980__ $$aI:(DE-He78)A240-20160331 000293327 980__ $$aI:(DE-He78)W192-20160331 000293327 980__ $$aUNRESTRICTED 000293327 980__ $$aAPC