001 | 293327 | ||
005 | 20250523121147.0 | ||
024 | 7 | _ | |a 10.1038/s44319-024-00258-8 |2 doi |
024 | 7 | _ | |a pmid:39285246 |2 pmid |
024 | 7 | _ | |a 1469-221X |2 ISSN |
024 | 7 | _ | |a 1469-3178 |2 ISSN |
037 | _ | _ | |a DKFZ-2024-01877 |
041 | _ | _ | |a English |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Man, Ka Hou |0 P:(DE-He78)54ffbd220f4f40801144e564197dd3d4 |b 0 |e First author |u dkfz |
245 | _ | _ | |a SOX10 mediates glioblastoma cell-state plasticity. |
260 | _ | _ | |a Hoboken, NJ [u.a.] |c 2024 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1732103303_4248 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:B060#LA:B060# / 2024 Nov;25(11):5113-5140 |
520 | _ | _ | |a Phenotypic plasticity is a cause of glioblastoma therapy failure. We previously showed that suppressing the oligodendrocyte-lineage regulator SOX10 promotes glioblastoma progression. Here, we analyze SOX10-mediated phenotypic plasticity and exploit it for glioblastoma therapy design. We show that low SOX10 expression is linked to neural stem-cell (NSC)-like glioblastoma cell states and is a consequence of temozolomide treatment in animal and cell line models. Single-cell transcriptome profiling of Sox10-KD tumors indicates that Sox10 suppression is sufficient to induce tumor progression to an aggressive NSC/developmental-like phenotype, including a quiescent NSC-like cell population. The quiescent NSC state is induced by temozolomide and Sox10-KD and reduced by Notch pathway inhibition in cell line models. Combination treatment using Notch and HDAC/PI3K inhibitors extends the survival of mice carrying Sox10-KD tumors, validating our experimental therapy approach. In summary, SOX10 suppression mediates glioblastoma progression through NSC/developmental cell-state transition, including the induction of a targetable quiescent NSC state. This work provides a rationale for the design of tumor therapies based on single-cell phenotypic plasticity analysis. |
536 | _ | _ | |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312) |0 G:(DE-HGF)POF4-312 |c POF4-312 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a SOX10 |2 Other |
650 | _ | 7 | |a Glioblastoma |2 Other |
650 | _ | 7 | |a Phenotypic Plasticity |2 Other |
650 | _ | 7 | |a Therapy Resistance |2 Other |
650 | _ | 7 | |a Tumor Cell Quiescence |2 Other |
700 | 1 | _ | |a Wu, Yonghe |b 1 |
700 | 1 | _ | |a Gao, Zhenjiang |b 2 |
700 | 1 | _ | |a Spreng, Anna-Sophie |0 P:(DE-He78)c4c258d44a86b1ab0d1c5d7370a4a916 |b 3 |u dkfz |
700 | 1 | _ | |a Keding, Sigrun Johanna Elisabeth |0 P:(DE-He78)4009b389a34f8d3f41368959e7fd8e6a |b 4 |
700 | 1 | _ | |a Mangei, Jasmin |0 P:(DE-He78)1bf78749dde0284a02c44a5153fba925 |b 5 |
700 | 1 | _ | |a Boskovic, Pavle |0 P:(DE-He78)843808e53ce583be326cf75564db3bdd |b 6 |
700 | 1 | _ | |a Mallm, Jan-Philipp |0 P:(DE-He78)697cb039ca08f3b7e5a2a52dbf020b46 |b 7 |u dkfz |
700 | 1 | _ | |a Liu, Hai-Kun |0 P:(DE-He78)76aeb2431f7458c9261e69c5420390c6 |b 8 |u dkfz |
700 | 1 | _ | |a Imbusch, Charles D |0 0000-0003-4920-551X |b 9 |
700 | 1 | _ | |a Lichter, Peter |0 P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c |b 10 |u dkfz |
700 | 1 | _ | |a Radlwimmer, Bernhard |0 P:(DE-He78)d1939d434dd885fad08106329e3db719 |b 11 |e Last author |u dkfz |
773 | _ | _ | |a 10.1038/s44319-024-00258-8 |0 PERI:(DE-600)2025376-X |n 11 |p 5113-5140 |t EMBO reports |v 25 |y 2024 |x 1469-221X |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/293327/files/man-et-al-sox10-mediates-glioblastoma-cell-state-plasticity-1.pdf |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/293327/files/man-et-al-sox10-mediates-glioblastoma-cell-state-plasticity-1.pdf?subformat=pdfa |x pdfa |
909 | C | O | |o oai:inrepo02.dkfz.de:293327 |p VDB |p OpenAPC |p openCost |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)54ffbd220f4f40801144e564197dd3d4 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)c4c258d44a86b1ab0d1c5d7370a4a916 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)4009b389a34f8d3f41368959e7fd8e6a |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)1bf78749dde0284a02c44a5153fba925 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)843808e53ce583be326cf75564db3bdd |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)697cb039ca08f3b7e5a2a52dbf020b46 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)76aeb2431f7458c9261e69c5420390c6 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 0000-0003-4920-551X |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 11 |6 P:(DE-He78)d1939d434dd885fad08106329e3db719 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-312 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Funktionelle und strukturelle Genomforschung |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-10-24 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EMBO REP : 2022 |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-24 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b EMBO REP : 2022 |d 2023-10-24 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
920 | 2 | _ | |0 I:(DE-He78)B060-20160331 |k B060 |l B060 Molekulare Genetik |x 0 |
920 | 1 | _ | |0 I:(DE-He78)B060-20160331 |k B060 |l B060 Molekulare Genetik |x 0 |
920 | 1 | _ | |0 I:(DE-He78)B330-20160331 |k B330 |l Angewandte Bioinformatik |x 1 |
920 | 1 | _ | |0 I:(DE-He78)A240-20160331 |k A240 |l A240 Molekulare Neurogenetik |x 2 |
920 | 1 | _ | |0 I:(DE-He78)W192-20160331 |k W192 |l scOpen Lab |x 3 |
920 | 0 | _ | |0 I:(DE-He78)B060-20160331 |k B060 |l B060 Molekulare Genetik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)B060-20160331 |
980 | _ | _ | |a I:(DE-He78)B330-20160331 |
980 | _ | _ | |a I:(DE-He78)A240-20160331 |
980 | _ | _ | |a I:(DE-He78)W192-20160331 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|