001     293583
005     20250102091604.0
024 7 _ |a 10.1002/mp.17408
|2 doi
024 7 _ |a pmid:39306865
|2 pmid
024 7 _ |a 0094-2405
|2 ISSN
024 7 _ |a 1522-8541
|2 ISSN
024 7 _ |a 2473-4209
|2 ISSN
037 _ _ |a DKFZ-2024-01906
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Ochoa-Parra, Pamela
|0 0009-0002-7373-7524
|b 0
|e First author
245 _ _ |a Experimental validation of a FLUKA Monte Carlo simulation for carbon-ion radiotherapy monitoring via secondary ion tracking.
260 _ _ |a College Park, Md.
|c 2024
|b AAPM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1735805726_26397
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E040#LA:E040# / 2024 Dec;51(12):9217-9229
520 _ _ |a In-vivo monitoring methods of carbon ion radiotherapy (CIRT) includes explorations of nuclear reaction products generated by carbon-ion beams interacting with patient tissues. Our research group focuses on in-vivo monitoring of CIRT using silicon pixel detectors. Currently, we are conducting a prospective clinical trial as part of the In-Vivo Monitoring project (InViMo) at the Heidelberg Ion Beam Therapy Center (HIT) in Germany. We are using an innovative, in-house developed, non-contact fragment tracking system with seven mini-trackers based on the Timepix3 technology developed at CERN.This article focuses on the implementation of the mini-tracker in Monte Carlo (MC) based on FLUKA simulations to monitor secondary charged nuclear fragments in CIRT. The main objective is to systematically evaluate the simulation accuracy for the InViMo project.The implementation involved integrating the mini-tracker geometry and the scoring mechanism into the FLUKA MC simulation, utilizing the finely tuned HIT beam line. The systematic investigation included varying mini-tracker angles (from 15 ∘ $15^\circ$ to 45 ∘ $45^\circ$ in 5 ∘ $5^\circ$ steps) during the irradiation of a head-sized phantom with therapeutic carbon-ion pencil beams. To evaluate our implemented FLUKA framework, a comparison was made between the experimental data and data obtained from MC simulations. To ensure the fidelity of our comparison, experiments were performed at the HIT using the parameters and setup established in the simulations.Our research demonstrates high accuracy in reproducing characteristic behaviors and dependencies of the monitoring method in terms of fragment distributions in the mini-tracker, track angles, emission profiles, and fragment numbers. Discrepancies in the number of detected fragments between the experimental data and the data obtained from MC simulations are less than 4% for the angles of interest in the InViMo detection system.Our study confirms the potential of our simulation framework to investigate the performance of monitoring inter-fractional anatomical changes in patients undergoing CIRT using secondary nuclear charged fragments escaping from the irradiated patient.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Monte Carlo simulations
|2 Other
650 _ 7 |a Timepix3
|2 Other
650 _ 7 |a carbon‐ion radiotherapy
|2 Other
650 _ 7 |a charged nuclear fragments
|2 Other
650 _ 7 |a in‐vivo monitoring
|2 Other
700 1 _ |a Schweins, Luisa
|0 P:(DE-He78)a805bd48e63b2e5e86fdedd2940dbfc2
|b 1
|e First author
|u dkfz
700 1 _ |a Abbani, Nelly
|0 P:(DE-He78)a246597c50c0907bfaeeeaff29367bd9
|b 2
700 1 _ |a Ghesquière-Diérickx, Laura
|b 3
700 1 _ |a Gehrke, Tim
|0 P:(DE-He78)4af90cacc534bcab08c5a70badbb2d5e
|b 4
|u dkfz
700 1 _ |a Jakubek, Jan
|b 5
700 1 _ |a Marek, Lukas
|b 6
700 1 _ |a Granja, Carlos
|b 7
700 1 _ |a Dinkel, Fabian
|0 P:(DE-He78)35857b3e43a244ed72dae89b456adfe0
|b 8
700 1 _ |a Echner, Gernot
|0 P:(DE-He78)5ce5a852e39ce8846d820376eb30697e
|b 9
|u dkfz
700 1 _ |a Winter, Marcus
|b 10
700 1 _ |a Mairani, Andrea
|b 11
700 1 _ |a Harrabi, Semi
|b 12
700 1 _ |a Jäkel, Oliver
|0 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44
|b 13
|u dkfz
700 1 _ |a Debus, Jürgen
|0 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
|b 14
|u dkfz
700 1 _ |a Martisikova, Maria
|0 P:(DE-He78)dfe82ba00edb8b1609794fbe37bd616f
|b 15
|e Last author
|u dkfz
700 1 _ |a Kelleter, Laurent
|0 P:(DE-He78)e37dd0bc6f3e4d55b7967219607e7d4e
|b 16
|e Last author
|u dkfz
773 _ _ |a 10.1002/mp.17408
|g p. mp.17408
|0 PERI:(DE-600)1466421-5
|n 12
|p 9217-9229
|t Medical physics
|v 51
|y 2024
|x 0094-2405
909 C O |p VDB
|o oai:inrepo02.dkfz.de:293583
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 0009-0002-7373-7524
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)a805bd48e63b2e5e86fdedd2940dbfc2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)a246597c50c0907bfaeeeaff29367bd9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)4af90cacc534bcab08c5a70badbb2d5e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)35857b3e43a244ed72dae89b456adfe0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)5ce5a852e39ce8846d820376eb30697e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)dfe82ba00edb8b1609794fbe37bd616f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)e37dd0bc6f3e4d55b7967219607e7d4e
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED PHYS : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 2 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E050-20160331
|k E050
|l E050 KKE Strahlentherapie
|x 1
920 0 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a I:(DE-He78)E050-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21