000293598 001__ 293598
000293598 005__ 20241028142658.0
000293598 0247_ $$2doi$$a10.1088/1361-6560/ad7f1e
000293598 0247_ $$2pmid$$apmid:39317232
000293598 0247_ $$2ISSN$$a0031-9155
000293598 0247_ $$2ISSN$$a1361-6560
000293598 037__ $$aDKFZ-2024-01915
000293598 041__ $$aEnglish
000293598 082__ $$a530
000293598 1001_ $$aRadonic, Domagoj$$b0
000293598 245__ $$aProton dose calculation with LSTM networks in presence of a magnetic field.
000293598 260__ $$aBristol$$bIOP Publ.$$c2024
000293598 3367_ $$2DRIVER$$aarticle
000293598 3367_ $$2DataCite$$aOutput Types/Journal article
000293598 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1730121984_11638
000293598 3367_ $$2BibTeX$$aARTICLE
000293598 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000293598 3367_ $$00$$2EndNote$$aJournal Article
000293598 500__ $$aMed. Biol. 69, 215019
000293598 520__ $$aTo present a long short-term memory (LSTM) network-based dose calculation method for magnetic resonance (MR)-guided proton therapy.35 planning computed tomography (CT) images of prostate cancer patients were collected for Monte Carlo (MC) dose calculation under a perpendicular 1.5 T magnetic field. Proton pencil beams (PB) at three energies (150, 175, and 200 MeV) were simulated (7560 PBs at each energy). A 3D relative stopping power (RSP) cuboid covering the extent of the PB dose was extracted and given as input to the LSTM model, yielding a 3D predicted PB dose. Three single-energy (SE) LSTM models were trained separately on the corresponding 150/175/200 MeV datasets and a multi-energy (ME) LSTM model with an energy embedding layer was trained on either the combined dataset with three energies or a continuous energy (CE) dataset with 1 MeV steps ranging from 125 to 200 MeV. For each model, training and validation involved 25 patients and 10 patients were for testing. Two single field uniform dose prostate treatment plans were optimized and recalculated with MC and the CE model.Test results of all PBs from the three SE models showed a mean gamma passing rate (2%/2mm, 10% dose cutoff) above 99.9% with an average center-of-mass (COM) discrepancy below 0.4 mm between predicted and simulated trajectories. The ME model showed a mean gamma passing rate exceeding 99.8% and a COM discrepancy of less than 0.5 mm at the three energies. Treatment plan recalculation by the CE model yielded gamma passing rates of 99.6% and 97.9%. The inference time of the models was 9-10 ms per PB.LSTM models for proton dose calculation in a magnetic field were developed and showed promising accuracy and efficiency for prostate cancer patients.
000293598 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000293598 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000293598 650_7 $$2Other$$aLSTM
000293598 650_7 $$2Other$$aMR-guided proton therapy
000293598 650_7 $$2Other$$adeep learning
000293598 650_7 $$2Other$$adose calculation
000293598 7001_ $$00000-0002-7502-0730$$aXiao, Fan$$b1
000293598 7001_ $$0P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aWahl, Niklas$$b2$$udkfz
000293598 7001_ $$0P:(DE-HGF)0$$aVoss, Luke$$b3
000293598 7001_ $$0P:(DE-He78)05d1465abf6918875d2df2781d7aec35$$aNeishabouri, Ahmad$$b4$$udkfz
000293598 7001_ $$aDelopoulos, Nikolaos$$b5
000293598 7001_ $$aMarschner, Sebastian$$b6
000293598 7001_ $$aCorradini, Stefanie$$b7
000293598 7001_ $$0P:(DE-HGF)0$$aBelka, Claus$$b8
000293598 7001_ $$aDedes, Georgios$$b9
000293598 7001_ $$aKurz, Christopher$$b10
000293598 7001_ $$00000-0003-1707-4068$$aLandry, Guillaume$$b11
000293598 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/ad7f1e$$p215019$$tPhysics in medicine and biology$$v69$$x0031-9155$$y2024
000293598 909CO $$ooai:inrepo02.dkfz.de:293598$$pVDB
000293598 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000293598 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000293598 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)05d1465abf6918875d2df2781d7aec35$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000293598 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000293598 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000293598 9141_ $$y2024
000293598 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-26$$wger
000293598 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
000293598 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
000293598 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
000293598 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
000293598 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
000293598 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-26
000293598 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-26
000293598 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
000293598 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2022$$d2023-08-26
000293598 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
000293598 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
000293598 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
000293598 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
000293598 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000293598 9201_ $$0I:(DE-He78)E210-20160331$$kE210$$lE210 KKE Translationale Radioonkologie$$x1
000293598 9201_ $$0I:(DE-He78)MU01-20160331$$kMU01$$lDKTK Koordinierungsstelle München$$x2
000293598 980__ $$ajournal
000293598 980__ $$aVDB
000293598 980__ $$aI:(DE-He78)E040-20160331
000293598 980__ $$aI:(DE-He78)E210-20160331
000293598 980__ $$aI:(DE-He78)MU01-20160331
000293598 980__ $$aUNRESTRICTED