001     293599
005     20241127150022.0
024 7 _ |a 10.1097/EDE.0000000000001795
|2 doi
024 7 _ |a pmid:39316822
|2 pmid
024 7 _ |a 1044-3983
|2 ISSN
024 7 _ |a 1531-5487
|2 ISSN
037 _ _ |a DKFZ-2024-01916
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Thomas, Claire E
|b 0
245 _ _ |a Characterization of additive gene-environment interactions for colorectal cancer risk.
260 _ _ |a Baltimore, Md.
|c 2025
|b Wolters Kluwer Health, Lippincott Williams & Wilkins
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1732715982_22666
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2025 Jan 1;36(1):126-138
520 _ _ |a Colorectal cancer (CRC) is a common, fatal cancer. Identifying subgroups who may benefit more from intervention is of critical public health importance. Previous studies have assessed multiplicative interaction between genetic risk scores and environmental factors, but few have assessed additive interaction, the relevant public health measure.Using resources from colorectal cancer consortia including 45,247 CRC cases and 52,671 controls, we assessed multiplicative and additive interaction (relative excess risk due to interaction, RERI) using logistic regression between 13 harmonized environmental factors and genetic risk score including 141 variants associated with CRC risk.There was no evidence of multiplicative interaction between environmental factors and genetic risk score. There was additive interaction where, for individuals with high genetic susceptibility, either heavy drinking [RERI = 0.24, 95% confidence interval, CI, (0.13, 0.36)], ever smoking [0.11 (0.05, 0.16)], high BMI [female 0.09 (0.05, 0.13), male 0.10 (0.05, 0.14)], or high red meat intake [highest versus lowest quartile 0.18 (0.09, 0.27)] was associated with excess CRC risk greater than that for individuals with average genetic susceptibility. Conversely, we estimate those with high genetic susceptibility may benefit more from reducing CRC risk with aspirin/NSAID use [-0.16 (-0.20, -0.11)] or higher intake of fruit, fiber, or calcium [highest quartile versus lowest quartile -0.12 (-0.18, -0.050); -0.16 (-0.23, -0.09); -0.11 (-0.18, -0.05), respectively] than those with average genetic susceptibility.Additive interaction is important to assess for identifying subgroups who may benefit from intervention. The subgroups identified in this study may help inform precision CRC prevention.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Lin, Yi
|b 1
700 1 _ |a Kim, Michelle
|b 2
700 1 _ |a Kawaguchi, Eric S
|b 3
700 1 _ |a Qu, Conghui
|b 4
700 1 _ |a Um, Caroline Y
|b 5
700 1 _ |a Lynch, Brigid M
|b 6
700 1 _ |a Van Guelpen, Bethany
|b 7
700 1 _ |a Tsilidis, Kostas
|b 8
700 1 _ |a Carreras-Torres, Robert
|b 9
700 1 _ |a van Duijnhoven, Franzel Jb
|b 10
700 1 _ |a Sakoda, Lori C
|b 11
700 1 _ |a Campbell, Peter T
|b 12
700 1 _ |a Tian, Yu
|b 13
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 14
|u dkfz
700 1 _ |a Bézieau, Stéphane
|b 15
700 1 _ |a Budiarto, Arif
|b 16
700 1 _ |a Palmer, Julie R
|b 17
700 1 _ |a Newcomb, Polly A
|b 18
700 1 _ |a Casey, Graham
|b 19
700 1 _ |a Le Marchand, Loic
|b 20
700 1 _ |a Giannakis, Marios
|b 21
700 1 _ |a Li, Christopher I
|b 22
700 1 _ |a Gsur, Andrea
|b 23
700 1 _ |a Newton, Christina
|b 24
700 1 _ |a Obón-Santacana, Mireia
|b 25
700 1 _ |a Moreno, Victor
|b 26
700 1 _ |a Vodicka, Pavel
|b 27
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 28
|u dkfz
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 29
|u dkfz
700 1 _ |a Pellatt, Andrew J
|b 30
700 1 _ |a Schoen, Robert E
|b 31
700 1 _ |a Dimou, Niki
|b 32
700 1 _ |a Murphy, Neil
|b 33
700 1 _ |a Gunter, Marc J
|b 34
700 1 _ |a Castellví-Bel, Sergi
|b 35
700 1 _ |a Figueiredo, Jane C
|b 36
700 1 _ |a Chan, Andrew T
|b 37
700 1 _ |a Song, Mingyang
|b 38
700 1 _ |a Li, Li
|b 39
700 1 _ |a Bishop, D Timothy
|b 40
700 1 _ |a Gruber, Stephen B
|b 41
700 1 _ |a Baurley, James W
|b 42
700 1 _ |a Bien, Stephanie A
|b 43
700 1 _ |a Conti, David V
|b 44
700 1 _ |a Huyghe, Jeroen R
|b 45
700 1 _ |a Kundaje, Anshul
|b 46
700 1 _ |a Su, Yu-Ru
|b 47
700 1 _ |a Wang, Jun
|b 48
700 1 _ |a Keku, Temitope O
|b 49
700 1 _ |a Woods, Michael O
|b 50
700 1 _ |a Berndt, Sonja I
|b 51
700 1 _ |a Chanock, Stephen J
|b 52
700 1 _ |a Tangen, Catherine M
|b 53
700 1 _ |a Wolk, Alicja
|b 54
700 1 _ |a Burnett-Hartman, Andrea
|b 55
700 1 _ |a Wu, Anna H
|b 56
700 1 _ |a White, Emily
|b 57
700 1 _ |a Devall, Matthew A
|b 58
700 1 _ |a Díez-Obrero, Virginia
|b 59
700 1 _ |a Drew, David A
|b 60
700 1 _ |a Giovannucci, Edward
|b 61
700 1 _ |a Hidaka, Akihisa
|b 62
700 1 _ |a Kim, Andre E
|b 63
700 1 _ |a Lewinger, Juan Pablo
|b 64
700 1 _ |a Morrison, John
|b 65
700 1 _ |a Ose, Jennifer
|b 66
700 1 _ |a Papadimitriou, Nikos
|b 67
700 1 _ |a Pardamean, Bens
|b 68
700 1 _ |a Peoples, Anita R
|b 69
700 1 _ |a Ruiz-Narvaez, Edward A
|b 70
700 1 _ |a Shcherbina, Anna
|b 71
700 1 _ |a Stern, Mariana C
|b 72
700 1 _ |a Chen, Xuechen
|b 73
700 1 _ |a Thomas, Duncan C
|b 74
700 1 _ |a Platz, Elizabeth A
|b 75
700 1 _ |a Gauderman, W James
|b 76
700 1 _ |a Peters, Ulrike
|b 77
700 1 _ |a Hsu, Li
|b 78
773 _ _ |a 10.1097/EDE.0000000000001795
|0 PERI:(DE-600)2042095-X
|n 1
|p 126-138
|t Epidemiology
|v 36
|y 2025
|x 1044-3983
909 C O |p VDB
|o oai:inrepo02.dkfz.de:293599
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 28
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 29
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2024
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-08-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EPIDEMIOLOGY : 2022
|d 2023-08-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EPIDEMIOLOGY : 2022
|d 2023-08-22
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 1
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 2
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21