Home > Publications database > Reconstructing and analyzing the invariances of low-dose CT image denoising networks. > print |
001 | 293809 | ||
005 | 20250107162137.0 | ||
024 | 7 | _ | |a 10.1002/mp.17413 |2 doi |
024 | 7 | _ | |a pmid:39348044 |2 pmid |
024 | 7 | _ | |a 0094-2405 |2 ISSN |
024 | 7 | _ | |a 1522-8541 |2 ISSN |
024 | 7 | _ | |a 2473-4209 |2 ISSN |
037 | _ | _ | |a DKFZ-2024-01967 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Eulig, Elias |0 P:(DE-He78)9f72962d56560b57e5630885c8f8b31d |b 0 |e First author |u dkfz |
245 | _ | _ | |a Reconstructing and analyzing the invariances of low-dose CT image denoising networks. |
260 | _ | _ | |a College Park, Md. |c 2025 |b AAPM |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1736263248_4144 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:E025#LA:E025# / 2025 Jan;52(1):188-200 |
520 | _ | _ | |a Deep learning-based methods led to significant advancements in many areas of medical imaging, most of which are concerned with the reduction of artifacts caused by motion, scatter, or noise. However, with most neural networks being black boxes, they remain notoriously difficult to interpret, hindering their clinical implementation. In particular, it has been shown that networks exhibit invariances w.r.t. input features, that is, they learn to ignore certain information in the input data.To improve the interpretability of deep learning-based low-dose CT image denoising networks.We learn a complete data representation of low-dose input images using a conditional variational autoencoder (cVAE). In this representation, invariances of any given denoising network are then disentangled from the information it is not invariant to using a conditional invertible neural network (cINN). At test time, image-space invariances are generated by applying the inverse of the cINN and subsequent decoding using the cVAE. We propose two methods to analyze sampled invariances and to find those that correspond to alterations of anatomical structures.The proposed method is applied to four popular deep learning-based low-dose CT image denoising networks. We find that the networks are not only invariant to noise amplitude and realizations, but also to anatomical structures.The proposed method is capable of reconstructing and analyzing invariances of deep learning-based low-dose CT image denoising networks. This is an important step toward interpreting deep learning-based methods for medical imaging, which is essential for their clinical implementation. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a computed tomography |2 Other |
650 | _ | 7 | |a deep learning |2 Other |
650 | _ | 7 | |a explainability |2 Other |
650 | _ | 7 | |a invariances |2 Other |
650 | _ | 7 | |a low‐dose |2 Other |
650 | _ | 7 | |a robustness |2 Other |
700 | 1 | _ | |a Jäger, Fabian |0 P:(DE-He78)ceed8085bb2faf0ec822fe89e8a085d3 |b 1 |u dkfz |
700 | 1 | _ | |a Maier, Joscha |0 P:(DE-He78)3c462b1378ce0906e7320c94e514abfa |b 2 |u dkfz |
700 | 1 | _ | |a Ommer, Björn |b 3 |
700 | 1 | _ | |a Kachelriess, Marc |0 P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323 |b 4 |e Last author |u dkfz |
773 | _ | _ | |a 10.1002/mp.17413 |g p. mp.17413 |0 PERI:(DE-600)1466421-5 |n 1 |p 188-200 |t Medical physics |v 52 |y 2025 |x 0094-2405 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:293809 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)9f72962d56560b57e5630885c8f8b31d |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)ceed8085bb2faf0ec822fe89e8a085d3 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)3c462b1378ce0906e7320c94e514abfa |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-10-21 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MED PHYS : 2022 |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-21 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-10-21 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-21 |
920 | 2 | _ | |0 I:(DE-He78)E025-20160331 |k E025 |l E025 Röntgenbildgebung und Computertomographie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E025-20160331 |k E025 |l E025 Röntgenbildgebung und Computertomographie |x 0 |
920 | 0 | _ | |0 I:(DE-He78)E025-20160331 |k E025 |l E025 Röntgenbildgebung und Computertomographie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E025-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|