001     293859
005     20250210095554.0
024 7 _ |a 10.1126/scitranslmed.adk5005
|2 doi
024 7 _ |a pmid:39356748
|2 pmid
024 7 _ |a 1946-6234
|2 ISSN
024 7 _ |a 1946-6242
|2 ISSN
024 7 _ |a altmetric:168893855
|2 altmetric
037 _ _ |a DKFZ-2024-01989
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Zhou, Luping
|0 0000-0003-1065-6604
|b 0
245 _ _ |a Glucocorticoids induce a maladaptive epithelial stress response to aggravate acute kidney injury.
260 _ _ |a Washington, DC
|c 2024
|b AAAS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1739177729_28365
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Acute kidney injury (AKI) is a frequent and challenging clinical condition associated with high morbidity and mortality and represents a common complication in critically ill patients with COVID-19. In AKI, renal tubular epithelial cells (TECs) are a primary site of damage, and recovery from AKI depends on TEC plasticity. However, the molecular mechanisms underlying adaptation and maladaptation of TECs in AKI remain largely unclear. Here, our study of an autopsy cohort of patients with COVID-19 provided evidence that injury of TECs by myoglobin, released as a consequence of rhabdomyolysis, is a major pathophysiological mechanism for AKI in severe COVID-19. Analyses of human kidney biopsies, mouse models of myoglobinuric and gentamicin-induced AKI, and mouse kidney tubuloids showed that TEC injury resulted in activation of the glucocorticoid receptor by endogenous glucocorticoids, which aggravated tubular damage. The detrimental effect of endogenous glucocorticoids on injured TECs was exacerbated by the administration of a widely clinically used synthetic glucocorticoid, dexamethasone, as indicated by experiments in mouse models of myoglobinuric- and folic acid-induced AKI, human and mouse kidney tubuloids, and human kidney slice cultures. Mechanistically, studies in mouse models of AKI, mouse tubuloids, and human kidney slice cultures demonstrated that glucocorticoid receptor signaling in injured TECs orchestrated a maladaptive transcriptional program to hinder DNA repair, amplify injury-induced DNA double-strand break formation, and dampen mTOR activity and mitochondrial bioenergetics. This study identifies glucocorticoid receptor activation as a mechanism of epithelial maladaptation, which is functionally important for AKI.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Glucocorticoids
|2 NLM Chemicals
650 _ 7 |a Receptors, Glucocorticoid
|2 NLM Chemicals
650 _ 7 |a Myoglobin
|2 NLM Chemicals
650 _ 7 |a Dexamethasone
|0 7S5I7G3JQL
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Acute Kidney Injury: metabolism
|2 MeSH
650 _ 2 |a Acute Kidney Injury: pathology
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Glucocorticoids: adverse effects
|2 MeSH
650 _ 2 |a Glucocorticoids: pharmacology
|2 MeSH
650 _ 2 |a COVID-19: complications
|2 MeSH
650 _ 2 |a COVID-19: metabolism
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Epithelial Cells: metabolism
|2 MeSH
650 _ 2 |a Epithelial Cells: drug effects
|2 MeSH
650 _ 2 |a Epithelial Cells: pathology
|2 MeSH
650 _ 2 |a Receptors, Glucocorticoid: metabolism
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Kidney Tubules: pathology
|2 MeSH
650 _ 2 |a Kidney Tubules: metabolism
|2 MeSH
650 _ 2 |a Kidney Tubules: drug effects
|2 MeSH
650 _ 2 |a Myoglobin: metabolism
|2 MeSH
650 _ 2 |a Dexamethasone: pharmacology
|2 MeSH
650 _ 2 |a Dexamethasone: adverse effects
|2 MeSH
650 _ 2 |a Stress, Physiological: drug effects
|2 MeSH
650 _ 2 |a SARS-CoV-2
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Female
|2 MeSH
700 1 _ |a Pereiro, Marc Torres
|0 0000-0003-3359-7715
|b 1
700 1 _ |a Li, Yanqun
|0 0009-0008-8470-676X
|b 2
700 1 _ |a Derigs, Marcus
|b 3
700 1 _ |a Kuenne, Carsten
|0 0000-0001-8013-5906
|b 4
700 1 _ |a Hielscher, Thomas
|0 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
|b 5
|u dkfz
700 1 _ |a Huang, Wei
|b 6
700 1 _ |a Kränzlin, Bettina
|0 0000-0003-1533-4057
|b 7
700 1 _ |a Tian, Gang
|0 0000-0002-4116-3215
|b 8
700 1 _ |a Kobayashi, Kazuhiro
|0 0000-0002-5390-8966
|b 9
700 1 _ |a Lu, Gia-Hue Natalie
|0 0009-0008-5096-1594
|b 10
700 1 _ |a Roedl, Kevin
|0 0000-0002-0721-9027
|b 11
700 1 _ |a Schmidt, Claudia
|0 P:(DE-He78)2a599a43bd0b5910c80edb288d8da3e5
|b 12
|u dkfz
700 1 _ |a Günther, Stefan
|0 0000-0002-5594-4549
|b 13
700 1 _ |a Looso, Mario
|0 0000-0003-1495-9530
|b 14
700 1 _ |a Huber, Johannes
|0 0000-0001-7243-8958
|b 15
700 1 _ |a Xu, Yong
|0 0000-0002-9534-6252
|b 16
700 1 _ |a Wiech, Thorsten
|0 0000-0003-4053-1474
|b 17
700 1 _ |a Sperhake, Jan-Peter
|b 18
700 1 _ |a Wichmann, Dominic
|b 19
700 1 _ |a Gröne, Hermann-Josef
|b 20
700 1 _ |a Worzfeld, Thomas
|0 0000-0003-3908-403X
|b 21
773 _ _ |a 10.1126/scitranslmed.adk5005
|g Vol. 16, no. 767, p. eadk5005
|0 PERI:(DE-600)2518839-2
|n 767
|p eadk5005
|t Science translational medicine
|v 16
|y 2024
|x 1946-6234
909 C O |p VDB
|o oai:inrepo02.dkfz.de:293859
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)2a599a43bd0b5910c80edb288d8da3e5
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI TRANSL MED : 2022
|d 2023-10-26
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b SCI TRANSL MED : 2022
|d 2023-10-26
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)W210-20160331
|k W210
|l Lichtmikroskopie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)W210-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21