001     293861
005     20250126014848.0
024 7 _ |a 10.1136/gutjnl-2024-332095
|2 doi
024 7 _ |a pmid:39353725
|2 pmid
024 7 _ |a 0017-5749
|2 ISSN
024 7 _ |a 1468-3288
|2 ISSN
024 7 _ |a altmetric:172857548
|2 altmetric
037 _ _ |a DKFZ-2024-01991
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Lian, Guodong
|b 0
245 _ _ |a p53 mutation biases squamocolumnar junction progenitor cells towards dysplasia rather than metaplasia in Barrett's oesophagus.
260 _ _ |a London
|c 2025
|b BMJ Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737369295_3882
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2025 Jan 17;74(2):182-196
520 _ _ |a While p53 mutations occur early in Barrett's oesophagus (BE) progression to oesophageal adenocarcinoma (EAC), their role in gastric cardia stem cells remains unclear.This study investigates the impact of p53 mutation on the fate and function of cardia progenitor cells in BE to EAC progression, particularly under the duress of chronic injury.We used a BE mouse model (L2-IL1β) harbouring a Trp53 mutation (R172H) to study the effects of p53 on Cck2r+ cardia progenitor cells. We employed lineage tracing, pathological analysis, organoid cultures, single-cell RNA sequencing (scRNA-seq) and computational analyses to investigate changes in progenitor cell behaviour, differentiation patterns and tumour progression. Additionally, we performed orthotopic transplantation of sorted metaplastic and mutant progenitor cells to assess their tumourigenic potential in vivo.The p53 mutation acts as a switch to expand progenitor cells and inhibit their differentiation towards metaplasia, but only amidst chronic injury. In L2-IL1β mice, p53 mutation increased progenitors expansion and lineage-tracing with a shift from metaplasia to dysplasia. scRNA-seq revealed dysplastic cells arise directly from mutant progenitors rather than progressing through metaplasia. In vitro, p53 mutation enhanced BE progenitors' organoid-forming efficiency, growth, DNA damage resistance and progression to aneuploidy. Sorted metaplastic cells grew poorly with no progression to dysplasia, while mutant progenitors gave rise to dysplasia in orthotopic transplantation. Computational analyses indicated that p53 mutation inhibited stem cell differentiation through Notch activation.p53 mutation contributes to BE progression by increasing expansion and fitness of undifferentiated cardia progenitors and preventing their differentiation towards metaplasia.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a BARRETT'S METAPLASIA
|2 Other
650 _ 7 |a BARRETT'S OESOPHAGUS
|2 Other
650 _ 7 |a DYSPLASIA
|2 Other
650 _ 7 |a OESOPHAGEAL CANCER
|2 Other
650 _ 7 |a STEM CELLS
|2 Other
700 1 _ |a Malagola, Ermanno
|b 1
700 1 _ |a Wei, Chengguo
|b 2
700 1 _ |a Shi, Qiongyu
|b 3
700 1 _ |a Zhao, Junfei
|b 4
700 1 _ |a Hata, Masahiro
|b 5
700 1 _ |a Kobayashi, Hiroki
|0 0000-0002-1717-4870
|b 6
700 1 _ |a Ochiai, Yosuke
|b 7
700 1 _ |a Zheng, Biyun
|b 8
700 1 _ |a Zhi, Xiaofei
|b 9
700 1 _ |a Wu, Feijing
|b 10
700 1 _ |a Tu, Ruhong
|b 11
700 1 _ |a Nápoles, Osmel Companioni
|b 12
700 1 _ |a Su, Wenjing
|b 13
700 1 _ |a Li, Leping
|b 14
700 1 _ |a Jing, Changqing
|b 15
700 1 _ |a Chen, Man
|b 16
700 1 _ |a Zamechek, Leah
|b 17
700 1 _ |a Friedman, Richard
|b 18
700 1 _ |a Nowicki-Osuch, Karol
|0 P:(DE-He78)5eecfbb3a55c32d69c08f67104c5c62b
|b 19
|u dkfz
700 1 _ |a Quante, Michael
|0 0000-0002-8497-582X
|b 20
700 1 _ |a Que, Jianwen
|b 21
700 1 _ |a Wang, Timothy C
|0 0000-0002-7940-8310
|b 22
773 _ _ |a 10.1136/gutjnl-2024-332095
|g p. gutjnl-2024-332095 -
|0 PERI:(DE-600)1492637-4
|n 2
|p 182-196
|t Gut
|v 74
|y 2025
|x 0017-5749
909 C O |p VDB
|o oai:inrepo02.dkfz.de:293861
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-He78)5eecfbb3a55c32d69c08f67104c5c62b
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2024
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GUT : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-21
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b GUT : 2022
|d 2023-10-21
920 1 _ |0 I:(DE-He78)C150-20160331
|k C150
|l NWG Tumorgenese und molekulare Krebsprävention
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C150-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21