000293956 001__ 293956 000293956 005__ 20250731105520.0 000293956 0247_ $$2doi$$a10.1002/ijc.35208 000293956 0247_ $$2pmid$$apmid:39378119 000293956 0247_ $$2ISSN$$a0020-7136 000293956 0247_ $$2ISSN$$a1097-0215 000293956 0247_ $$2altmetric$$aaltmetric:169105302 000293956 037__ $$aDKFZ-2024-02021 000293956 041__ $$aEnglish 000293956 082__ $$a610 000293956 1001_ $$00000-0002-8185-5929$$aGrenville, Zoe S$$b0 000293956 245__ $$aPerturbations in the blood metabolome up to a decade before prostate cancer diagnosis in 4387 matched case-control sets from the European Prospective Investigation into Cancer and Nutrition. 000293956 260__ $$aBognor Regis$$bWiley-Liss$$c2025 000293956 3367_ $$2DRIVER$$aarticle 000293956 3367_ $$2DataCite$$aOutput Types/Journal article 000293956 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736263156_26416 000293956 3367_ $$2BibTeX$$aARTICLE 000293956 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000293956 3367_ $$00$$2EndNote$$aJournal Article 000293956 500__ $$a2025 Mar 1;156(5):943-952 000293956 520__ $$aMeasuring pre-diagnostic blood metabolites may help identify novel risk factors for prostate cancer. Using data from 4387 matched case-control pairs from the European Prospective Investigation into Cancer and Nutrition (EPIC) study, we investigated the associations of 148 individual metabolites and three previously defined metabolite patterns with prostate cancer risk. Metabolites were measured by liquid chromatography-mass spectrometry. Multivariable-adjusted conditional logistic regression was used to estimate the odds ratio per standard deviation increase in log metabolite concentration and metabolite patterns (OR1SD) for prostate cancer overall, and for advanced, high-grade, aggressive. We corrected for multiple testing using the Benjamini-Hochberg method. Overall, there were no associations between specific metabolites or metabolite patterns and overall, aggressive, or high-grade prostate cancer that passed the multiple testing threshold (padj <0.05). Six phosphatidylcholines (PCs) were inversely associated with advanced prostate cancer diagnosed at or within 10 years of blood collection. metabolite patterns 1 (64 PCs and three hydroxysphingomyelins) and 2 (two acylcarnitines, glutamate, ornithine, and taurine) were also inversely associated with advanced prostate cancer; when stratified by follow-up time, these associations were observed for diagnoses at or within 10 years of recruitment (OR1SD 0.80, 95% CI 0.66-0.96 and 0.76, 0.59-0.97, respectively) but were weaker after longer follow-up (0.95, 0.82-1.10 and 0.85, 0.67-1.06). Pattern 3 (8 lyso PCs) was associated with prostate cancer death (0.82, 0.68-0.98). Our results suggest that the plasma metabolite profile changes in response to the presence of prostate cancer up to a decade before detection of advanced-stage disease. 000293956 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0 000293956 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de 000293956 650_7 $$2Other$$aEuropean prospective investigation into cancer and nutrition (EPIC) 000293956 650_7 $$2Other$$acancer biomarkers 000293956 650_7 $$2Other$$ametabolomics 000293956 650_7 $$2Other$$aprospective cohort 000293956 650_7 $$2Other$$aprostate cancer 000293956 7001_ $$aNoor, Urwah$$b1 000293956 7001_ $$aRinaldi, Sabina$$b2 000293956 7001_ $$aGunter, Marc J$$b3 000293956 7001_ $$aFerrari, Pietro$$b4 000293956 7001_ $$aAgnoli, Claudia$$b5 000293956 7001_ $$aAmiano, Pilar$$b6 000293956 7001_ $$00000-0003-2597-2060$$aCatalano, Alberto$$b7 000293956 7001_ $$aChirlaque, María Dolores$$b8 000293956 7001_ $$00000-0001-9219-4436$$aChristakoudi, Sofia$$b9 000293956 7001_ $$aGuevara, Marcela$$b10 000293956 7001_ $$aJohansson, Matthias$$b11 000293956 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b12$$udkfz 000293956 7001_ $$0P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aKatzke, Verena$$b13$$udkfz 000293956 7001_ $$aMasala, Giovanna$$b14 000293956 7001_ $$aOlsen, Anja$$b15 000293956 7001_ $$aPapier, Keren$$b16 000293956 7001_ $$aSánchez, Maria-Jose$$b17 000293956 7001_ $$aSchulze, Matthias B$$b18 000293956 7001_ $$aTjønneland, Anne$$b19 000293956 7001_ $$aTong, Tammy Y N$$b20 000293956 7001_ $$aTumino, Rosario$$b21 000293956 7001_ $$00000-0003-2237-0128$$aWeiderpass, Elisabete$$b22 000293956 7001_ $$00000-0002-6236-6804$$aZamora-Ros, Raul$$b23 000293956 7001_ $$aKey, Timothy J$$b24 000293956 7001_ $$aSmith-Byrne, Karl$$b25 000293956 7001_ $$00000-0002-7733-8750$$aSchmidt, Julie A$$b26 000293956 7001_ $$aTravis, Ruth C$$b27 000293956 773__ $$0PERI:(DE-600)1474822-8$$a10.1002/ijc.35208$$gp. ijc.35208$$n5$$p943-952$$tInternational journal of cancer$$v156$$x0020-7136$$y2025 000293956 8564_ $$uhttps://inrepo02.dkfz.de/record/293956/files/Intl%20Journal%20of%20Cancer%20-%202024%20-%20Grenville%20-%20Perturbations%20in%20the%20blood%20metabolome%20up%20to%20a%20decade%20before%20prostate%20cancer.pdf 000293956 8564_ $$uhttps://inrepo02.dkfz.de/record/293956/files/Intl%20Journal%20of%20Cancer%20-%202024%20-%20Grenville%20-%20Perturbations%20in%20the%20blood%20metabolome%20up%20to%20a%20decade%20before%20prostate%20cancer.pdf?subformat=pdfa$$xpdfa 000293956 909CO $$ooai:inrepo02.dkfz.de:293956$$pVDB 000293956 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ 000293956 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ 000293956 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0 000293956 9141_ $$y2024 000293956 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger 000293956 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-21$$wger 000293956 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21 000293956 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21 000293956 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21 000293956 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21 000293956 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21 000293956 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21 000293956 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21 000293956 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21 000293956 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21 000293956 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CANCER : 2022$$d2023-10-21 000293956 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J CANCER : 2022$$d2023-10-21 000293956 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0 000293956 980__ $$ajournal 000293956 980__ $$aVDB 000293956 980__ $$aI:(DE-He78)C020-20160331 000293956 980__ $$aUNRESTRICTED