000293956 001__ 293956
000293956 005__ 20250731105520.0
000293956 0247_ $$2doi$$a10.1002/ijc.35208
000293956 0247_ $$2pmid$$apmid:39378119
000293956 0247_ $$2ISSN$$a0020-7136
000293956 0247_ $$2ISSN$$a1097-0215
000293956 0247_ $$2altmetric$$aaltmetric:169105302
000293956 037__ $$aDKFZ-2024-02021
000293956 041__ $$aEnglish
000293956 082__ $$a610
000293956 1001_ $$00000-0002-8185-5929$$aGrenville, Zoe S$$b0
000293956 245__ $$aPerturbations in the blood metabolome up to a decade before prostate cancer diagnosis in 4387 matched case-control sets from the European Prospective Investigation into Cancer and Nutrition.
000293956 260__ $$aBognor Regis$$bWiley-Liss$$c2025
000293956 3367_ $$2DRIVER$$aarticle
000293956 3367_ $$2DataCite$$aOutput Types/Journal article
000293956 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736263156_26416
000293956 3367_ $$2BibTeX$$aARTICLE
000293956 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000293956 3367_ $$00$$2EndNote$$aJournal Article
000293956 500__ $$a2025 Mar 1;156(5):943-952
000293956 520__ $$aMeasuring pre-diagnostic blood metabolites may help identify novel risk factors for prostate cancer. Using data from 4387 matched case-control pairs from the European Prospective Investigation into Cancer and Nutrition (EPIC) study, we investigated the associations of 148 individual metabolites and three previously defined metabolite patterns with prostate cancer risk. Metabolites were measured by liquid chromatography-mass spectrometry. Multivariable-adjusted conditional logistic regression was used to estimate the odds ratio per standard deviation increase in log metabolite concentration and metabolite patterns (OR1SD) for prostate cancer overall, and for advanced, high-grade, aggressive. We corrected for multiple testing using the Benjamini-Hochberg method. Overall, there were no associations between specific metabolites or metabolite patterns and overall, aggressive, or high-grade prostate cancer that passed the multiple testing threshold (padj <0.05). Six phosphatidylcholines (PCs) were inversely associated with advanced prostate cancer diagnosed at or within 10 years of blood collection. metabolite patterns 1 (64 PCs and three hydroxysphingomyelins) and 2 (two acylcarnitines, glutamate, ornithine, and taurine) were also inversely associated with advanced prostate cancer; when stratified by follow-up time, these associations were observed for diagnoses at or within 10 years of recruitment (OR1SD 0.80, 95% CI 0.66-0.96 and 0.76, 0.59-0.97, respectively) but were weaker after longer follow-up (0.95, 0.82-1.10 and 0.85, 0.67-1.06). Pattern 3 (8 lyso PCs) was associated with prostate cancer death (0.82, 0.68-0.98). Our results suggest that the plasma metabolite profile changes in response to the presence of prostate cancer up to a decade before detection of advanced-stage disease.
000293956 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000293956 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000293956 650_7 $$2Other$$aEuropean prospective investigation into cancer and nutrition (EPIC)
000293956 650_7 $$2Other$$acancer biomarkers
000293956 650_7 $$2Other$$ametabolomics
000293956 650_7 $$2Other$$aprospective cohort
000293956 650_7 $$2Other$$aprostate cancer
000293956 7001_ $$aNoor, Urwah$$b1
000293956 7001_ $$aRinaldi, Sabina$$b2
000293956 7001_ $$aGunter, Marc J$$b3
000293956 7001_ $$aFerrari, Pietro$$b4
000293956 7001_ $$aAgnoli, Claudia$$b5
000293956 7001_ $$aAmiano, Pilar$$b6
000293956 7001_ $$00000-0003-2597-2060$$aCatalano, Alberto$$b7
000293956 7001_ $$aChirlaque, María Dolores$$b8
000293956 7001_ $$00000-0001-9219-4436$$aChristakoudi, Sofia$$b9
000293956 7001_ $$aGuevara, Marcela$$b10
000293956 7001_ $$aJohansson, Matthias$$b11
000293956 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b12$$udkfz
000293956 7001_ $$0P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aKatzke, Verena$$b13$$udkfz
000293956 7001_ $$aMasala, Giovanna$$b14
000293956 7001_ $$aOlsen, Anja$$b15
000293956 7001_ $$aPapier, Keren$$b16
000293956 7001_ $$aSánchez, Maria-Jose$$b17
000293956 7001_ $$aSchulze, Matthias B$$b18
000293956 7001_ $$aTjønneland, Anne$$b19
000293956 7001_ $$aTong, Tammy Y N$$b20
000293956 7001_ $$aTumino, Rosario$$b21
000293956 7001_ $$00000-0003-2237-0128$$aWeiderpass, Elisabete$$b22
000293956 7001_ $$00000-0002-6236-6804$$aZamora-Ros, Raul$$b23
000293956 7001_ $$aKey, Timothy J$$b24
000293956 7001_ $$aSmith-Byrne, Karl$$b25
000293956 7001_ $$00000-0002-7733-8750$$aSchmidt, Julie A$$b26
000293956 7001_ $$aTravis, Ruth C$$b27
000293956 773__ $$0PERI:(DE-600)1474822-8$$a10.1002/ijc.35208$$gp. ijc.35208$$n5$$p943-952$$tInternational journal of cancer$$v156$$x0020-7136$$y2025
000293956 8564_ $$uhttps://inrepo02.dkfz.de/record/293956/files/Intl%20Journal%20of%20Cancer%20-%202024%20-%20Grenville%20-%20Perturbations%20in%20the%20blood%20metabolome%20up%20to%20a%20decade%20before%20prostate%20cancer.pdf
000293956 8564_ $$uhttps://inrepo02.dkfz.de/record/293956/files/Intl%20Journal%20of%20Cancer%20-%202024%20-%20Grenville%20-%20Perturbations%20in%20the%20blood%20metabolome%20up%20to%20a%20decade%20before%20prostate%20cancer.pdf?subformat=pdfa$$xpdfa
000293956 909CO $$ooai:inrepo02.dkfz.de:293956$$pVDB
000293956 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000293956 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000293956 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000293956 9141_ $$y2024
000293956 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000293956 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-21$$wger
000293956 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000293956 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000293956 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000293956 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000293956 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000293956 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000293956 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000293956 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
000293956 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000293956 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CANCER : 2022$$d2023-10-21
000293956 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J CANCER : 2022$$d2023-10-21
000293956 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000293956 980__ $$ajournal
000293956 980__ $$aVDB
000293956 980__ $$aI:(DE-He78)C020-20160331
000293956 980__ $$aUNRESTRICTED