000293969 001__ 293969
000293969 005__ 20250523132536.0
000293969 0247_ $$2doi$$a10.1002/jpen.2695
000293969 0247_ $$2pmid$$apmid:39380423
000293969 0247_ $$2ISSN$$a0148-6071
000293969 0247_ $$2ISSN$$a1941-2444
000293969 037__ $$aDKFZ-2024-02029
000293969 041__ $$aEnglish
000293969 082__ $$a610
000293969 1001_ $$aXie, He$$b0
000293969 245__ $$aSystemic immune-inflammation states in US adults with seropositivity to infectious pathogens: A nutrient-wide association study.
000293969 260__ $$aHoboken, NJ$$bWiley$$c2025
000293969 3367_ $$2DRIVER$$aarticle
000293969 3367_ $$2DataCite$$aOutput Types/Journal article
000293969 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736519329_15914
000293969 3367_ $$2BibTeX$$aARTICLE
000293969 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000293969 3367_ $$00$$2EndNote$$aJournal Article
000293969 500__ $$a#LA:C070# / 2025 Jan;49(1):94-102
000293969 520__ $$aLimited understanding exists regarding the association between daily total dietary nutrient intakes and immune-inflammation states in US adults exposed to various pathogens. This study sought to examine the correlation between nutrient intakes and immune-inflammation indicators and to assess their performance in distinguishing immune-inflammation states.This study was derived from the National Health and Nutrition Examination Survey (NHANES), which included 33,804 participants aged 20 years or older between 2005 and 2018. Multivariable linear regression and restricted cubic spline regression were conducted to evaluate the association between nutrient intakes and immune-inflammation indicators. Receiver operating characteristic curve analysis was performed to evaluate the discriminatory performance of identified nutrients for various immune-inflammation states measured by the systemic immune-inflammation index (SII).Ten key nutrients were significantly associated with immune-inflammation responses, including calcium, saturated fatty acid (SFA) 4:0, SFA 6:0, SFA 12:0, SFA 14:0, SFA 16:0, vitamin B2, total SFAs, retinol, and lutein + zeaxanthin, which show potential as dietary indicators. The area under the curve for discriminating various immune-inflammation states was improved by at least 0.03 compared with a model that included only covariates, with all P values <0.05 in the Delong tests, indicating a significant enhancement in model performance.Ten nutrients, including calcium, various SFAs, vitamin B2, retinol, and lutein + zeaxanthin, exhibit significant association with SII and potential as dietary indicators for distinguishing between different immune-inflammation states in US adults with seropositivity to various viruses.
000293969 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000293969 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000293969 650_7 $$2Other$$adose‐response relationship
000293969 650_7 $$2Other$$aimmune‐inflammation status
000293969 650_7 $$2Other$$anutrients
000293969 7001_ $$aHalimulati, Mairepaiti$$b1
000293969 7001_ $$aDou, Yuqi$$b2
000293969 7001_ $$aZhang, Hanyue$$b3
000293969 7001_ $$aJiang, Xiaowen$$b4
000293969 7001_ $$0P:(DE-He78)4ce42c81105c13e820996838fed24b31$$aPeng, Lei$$b5$$eLast author$$udkfz
000293969 773__ $$0PERI:(DE-600)2170060-6$$a10.1002/jpen.2695$$gp. jpen.2695$$n1$$p94-102$$tJournal of parenteral and enteral nutrition$$v49$$x0148-6071$$y2025
000293969 8564_ $$uhttps://inrepo02.dkfz.de/record/293969/files/J%20Parenter%20Enteral%20Nutr%20-%202024%20-%20Xie%20-%20Systemic%20immune%E2%80%90inflammation%20states%20in%20US%20adults%20with%20seropositivity%20to%20infectious.pdf
000293969 8564_ $$uhttps://inrepo02.dkfz.de/record/293969/files/J%20Parenter%20Enteral%20Nutr%20-%202024%20-%20Xie%20-%20Systemic%20immune%E2%80%90inflammation%20states%20in%20US%20adults%20with%20seropositivity%20to%20infectious.pdf?subformat=pdfa$$xpdfa
000293969 909CO $$ooai:inrepo02.dkfz.de:293969$$pVDB
000293969 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4ce42c81105c13e820996838fed24b31$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000293969 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000293969 9141_ $$y2024
000293969 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-25$$wger
000293969 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-25$$wger
000293969 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
000293969 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
000293969 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-25
000293969 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
000293969 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
000293969 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-25
000293969 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
000293969 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-25
000293969 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJPEN-PARENTER ENTER : 2022$$d2023-10-25
000293969 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
000293969 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-25
000293969 9202_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000293969 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000293969 980__ $$ajournal
000293969 980__ $$aVDB
000293969 980__ $$aI:(DE-He78)C070-20160331
000293969 980__ $$aUNRESTRICTED