000294309 001__ 294309
000294309 005__ 20250425142755.0
000294309 0247_ $$2doi$$a10.1007/s00330-024-11142-3
000294309 0247_ $$2pmid$$apmid:39455455
000294309 0247_ $$2ISSN$$a0938-7994
000294309 0247_ $$2ISSN$$a1432-1084
000294309 0247_ $$2ISSN$$a1613-3749
000294309 0247_ $$2ISSN$$a1613-3757
000294309 0247_ $$2ISSN$$a(ISSN
000294309 0247_ $$2ISSN$$aDES
000294309 0247_ $$2ISSN$$aSUPPLEMENTS)
000294309 037__ $$aDKFZ-2024-02142
000294309 041__ $$aEnglish
000294309 082__ $$a610
000294309 1001_ $$00000-0002-8450-3021$$aLiebert, Andrzej$$b0
000294309 245__ $$aImpact of non-contrast-enhanced imaging input sequences on the generation of virtual contrast-enhanced breast MRI scans using neural network.
000294309 260__ $$aHeidelberg$$bSpringer$$c2025
000294309 3367_ $$2DRIVER$$aarticle
000294309 3367_ $$2DataCite$$aOutput Types/Journal article
000294309 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745584034_24709
000294309 3367_ $$2BibTeX$$aARTICLE
000294309 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000294309 3367_ $$00$$2EndNote$$aJournal Article
000294309 500__ $$a#LA:E250# / 2025 May;35(5):2603-2616
000294309 520__ $$aTo investigate how different combinations of T1-weighted (T1w), T2-weighted (T2w), and diffusion-weighted imaging (DWI) impact the performance of virtual contrast-enhanced (vCE) breast MRI.The IRB-approved, retrospective study included 1064 multiparametric breast MRI scans (age: 52 ± 12 years) obtained from 2017 to 2020 (single site, two 3-T MRI). Eleven independent neural networks were trained to derive vCE images from varying input combinations of T1w, T2w, and multi-b-value DWI sequences (b-value = 50-1500 s/mm2). Three readers evaluated the vCE images with regard to qualitative scores of diagnostic image quality, image sharpness, satisfaction with contrast/signal-to-noise ratio, and lesion/non-mass enhancement conspicuity. Quantitative metrics (SSIM, PSNR, NRMSE, and median symmetrical accuracy) were analyzed and statistically compared between the input combinations for the full breast volume and both enhancing and non-enhancing target findings.The independent test set consisted of 187 cases. The quantitative metrics significantly improved in target findings when multi-b-value DWI sequences were included during vCE training (p < 0.05). Non-significant effects (p > 0.05) were observed for the quantitative metrics on the full breast volume when comparing input combinations including T1w. Using T1w and DWI acquisitions during vCE training is necessary to achieve high satisfaction with contrast/SNR and good conspicuity of the enhancing findings. The input combination of T1w, T2w, and DWI sequences with three b-values showed the best qualitative performance.vCE breast MRI performance is significantly influenced by input sequences. Quantitative metrics and visual quality of vCE images significantly benefit when multi b-value DWI is added to morphologic T1w-/T2w sequences as input for model training.Question How do different MRI sequences impact the performance of virtual contrast-enhanced (vCE) breast MRI? Findings The input combination of T1-weighted, T2-weighted, and diffusion-weighted imaging sequences with three b-values showed the best qualitative performance. Clinical relevance While in the future neural networks providing virtual contrast-enhanced images might further improve accessibility to breast MRI, the significant influence of input data needs to be considered during translational research.
000294309 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000294309 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000294309 650_7 $$2Other$$aArtificial intelligence
000294309 650_7 $$2Other$$aBreast imaging
000294309 650_7 $$2Other$$aMagnetic resonance imaging
000294309 650_7 $$2Other$$aNeural network
000294309 7001_ $$aSchreiter, Hannes$$b1
000294309 7001_ $$aKapsner, Lorenz A$$b2
000294309 7001_ $$aEberle, Jessica$$b3
000294309 7001_ $$aEhring, Chris M$$b4
000294309 7001_ $$aHadler, Dominique$$b5
000294309 7001_ $$aBrock, Luise$$b6
000294309 7001_ $$aErber, Ramona$$b7
000294309 7001_ $$aEmons, Julius$$b8
000294309 7001_ $$aLaun, Frederik B$$b9
000294309 7001_ $$aUder, Michael$$b10
000294309 7001_ $$aWenkel, Evelyn$$b11
000294309 7001_ $$aOhlmeyer, Sabine$$b12
000294309 7001_ $$0P:(DE-He78)d2d971750bce6217eb90fff9b01e61f9$$aBickelhaupt, Sebastian$$b13$$eLast author$$udkfz
000294309 773__ $$0PERI:(DE-600)1472718-3$$a10.1007/s00330-024-11142-3$$n5$$p2603-2616$$tEuropean radiology$$v35$$x0938-7994$$y2025
000294309 909CO $$ooai:inrepo02.dkfz.de:294309$$pVDB
000294309 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d2d971750bce6217eb90fff9b01e61f9$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000294309 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000294309 9141_ $$y2024
000294309 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-19$$wger
000294309 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-19$$wger
000294309 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19
000294309 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19
000294309 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19
000294309 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-19
000294309 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19
000294309 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-19
000294309 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-19
000294309 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR RADIOL : 2022$$d2023-08-19
000294309 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-19
000294309 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-19
000294309 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEUR RADIOL : 2022$$d2023-08-19
000294309 9202_ $$0I:(DE-He78)E250-20160331$$kE250$$lNWG KKE Multiparametrische Methoden zur Früherkennung des Prostatakarzinoms$$x0
000294309 9201_ $$0I:(DE-He78)E250-20160331$$kE250$$lNWG KKE Multiparametrische Methoden zur Früherkennung des Prostatakarzinoms$$x0
000294309 980__ $$ajournal
000294309 980__ $$aVDB
000294309 980__ $$aI:(DE-He78)E250-20160331
000294309 980__ $$aUNRESTRICTED