001     294309
005     20250425142755.0
024 7 _ |a 10.1007/s00330-024-11142-3
|2 doi
024 7 _ |a pmid:39455455
|2 pmid
024 7 _ |a 0938-7994
|2 ISSN
024 7 _ |a 1432-1084
|2 ISSN
024 7 _ |a 1613-3749
|2 ISSN
024 7 _ |a 1613-3757
|2 ISSN
024 7 _ |a (ISSN
|2 ISSN
024 7 _ |a DES
|2 ISSN
024 7 _ |a SUPPLEMENTS)
|2 ISSN
037 _ _ |a DKFZ-2024-02142
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Liebert, Andrzej
|0 0000-0002-8450-3021
|b 0
245 _ _ |a Impact of non-contrast-enhanced imaging input sequences on the generation of virtual contrast-enhanced breast MRI scans using neural network.
260 _ _ |a Heidelberg
|c 2025
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1745584034_24709
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:E250# / 2025 May;35(5):2603-2616
520 _ _ |a To investigate how different combinations of T1-weighted (T1w), T2-weighted (T2w), and diffusion-weighted imaging (DWI) impact the performance of virtual contrast-enhanced (vCE) breast MRI.The IRB-approved, retrospective study included 1064 multiparametric breast MRI scans (age: 52 ± 12 years) obtained from 2017 to 2020 (single site, two 3-T MRI). Eleven independent neural networks were trained to derive vCE images from varying input combinations of T1w, T2w, and multi-b-value DWI sequences (b-value = 50-1500 s/mm2). Three readers evaluated the vCE images with regard to qualitative scores of diagnostic image quality, image sharpness, satisfaction with contrast/signal-to-noise ratio, and lesion/non-mass enhancement conspicuity. Quantitative metrics (SSIM, PSNR, NRMSE, and median symmetrical accuracy) were analyzed and statistically compared between the input combinations for the full breast volume and both enhancing and non-enhancing target findings.The independent test set consisted of 187 cases. The quantitative metrics significantly improved in target findings when multi-b-value DWI sequences were included during vCE training (p < 0.05). Non-significant effects (p > 0.05) were observed for the quantitative metrics on the full breast volume when comparing input combinations including T1w. Using T1w and DWI acquisitions during vCE training is necessary to achieve high satisfaction with contrast/SNR and good conspicuity of the enhancing findings. The input combination of T1w, T2w, and DWI sequences with three b-values showed the best qualitative performance.vCE breast MRI performance is significantly influenced by input sequences. Quantitative metrics and visual quality of vCE images significantly benefit when multi b-value DWI is added to morphologic T1w-/T2w sequences as input for model training.Question How do different MRI sequences impact the performance of virtual contrast-enhanced (vCE) breast MRI? Findings The input combination of T1-weighted, T2-weighted, and diffusion-weighted imaging sequences with three b-values showed the best qualitative performance. Clinical relevance While in the future neural networks providing virtual contrast-enhanced images might further improve accessibility to breast MRI, the significant influence of input data needs to be considered during translational research.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Artificial intelligence
|2 Other
650 _ 7 |a Breast imaging
|2 Other
650 _ 7 |a Magnetic resonance imaging
|2 Other
650 _ 7 |a Neural network
|2 Other
700 1 _ |a Schreiter, Hannes
|b 1
700 1 _ |a Kapsner, Lorenz A
|b 2
700 1 _ |a Eberle, Jessica
|b 3
700 1 _ |a Ehring, Chris M
|b 4
700 1 _ |a Hadler, Dominique
|b 5
700 1 _ |a Brock, Luise
|b 6
700 1 _ |a Erber, Ramona
|b 7
700 1 _ |a Emons, Julius
|b 8
700 1 _ |a Laun, Frederik B
|b 9
700 1 _ |a Uder, Michael
|b 10
700 1 _ |a Wenkel, Evelyn
|b 11
700 1 _ |a Ohlmeyer, Sabine
|b 12
700 1 _ |a Bickelhaupt, Sebastian
|0 P:(DE-He78)d2d971750bce6217eb90fff9b01e61f9
|b 13
|e Last author
|u dkfz
773 _ _ |a 10.1007/s00330-024-11142-3
|0 PERI:(DE-600)1472718-3
|n 5
|p 2603-2616
|t European radiology
|v 35
|y 2025
|x 0938-7994
909 C O |p VDB
|o oai:inrepo02.dkfz.de:294309
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)d2d971750bce6217eb90fff9b01e61f9
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-08-19
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-08-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR RADIOL : 2022
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-19
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EUR RADIOL : 2022
|d 2023-08-19
920 2 _ |0 I:(DE-He78)E250-20160331
|k E250
|l NWG KKE Multiparametrische Methoden zur Früherkennung des Prostatakarzinoms
|x 0
920 1 _ |0 I:(DE-He78)E250-20160331
|k E250
|l NWG KKE Multiparametrische Methoden zur Früherkennung des Prostatakarzinoms
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E250-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21