001     294332
005     20250224131616.0
024 7 _ |a 10.1182/blood.2024025366
|2 doi
024 7 _ |a pmid:39441941
|2 pmid
024 7 _ |a 0006-4971
|2 ISSN
024 7 _ |a 1528-0020
|2 ISSN
024 7 _ |a altmetric:169625216
|2 altmetric
037 _ _ |a DKFZ-2024-02165
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Prasad, Rishika
|0 0000-0002-6875-0954
|b 0
245 _ _ |a Antibiotic-induced loss of gut microbiome metabolic output correlates with clinical responses to CAR T-cell therapy.
260 _ _ |a Washington, DC
|c 2025
|b American Society of Hematology
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1740398902_26735
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2025 Feb 20;145(8):823-839
520 _ _ |a Antibiotic-induced microbiome dysbiosis is widespread in oncology, adversely affecting outcomes and side effects of various cancer treatments, including immune checkpoint inhibitors and chimeric antigen receptor T (CAR-T) cell therapies. In this study, we observed that prior exposure to broad-spectrum ABX with extended anaerobic coverage like piperacillin-tazobactam and meropenem was associated with worsened anti-CD19 CAR-T therapy survival outcomes in large B-cell lymphoma patients (n=422), compared to other ABX classes. In a discovery subset of these patients (n=67), we found that the use of these ABX was in turn associated with substantial dysbiosis of gut microbiome function, resulting in significant alterations of the gut and blood metabolome, including microbial effectors such as short-chain fatty acids (SCFAs) and other anionic metabolites, findings that were largely reproduced in an external validation cohort (n=58). Broader evaluation of circulating microbial metabolites revealed reductions in indole and cresol derivatives, as well as trimethylamine N-oxide, in patients who received ABX treatment (discovery n=40, validation n=28). These findings were recapitulated in an immune-competent CAR-T mouse model, where meropenem-induced dysbiosis led to a systemic dysmetabolome and decreased murine anti-CD19 CAR-T efficacy. Furthermore, we demonstrate that SCFAs can enhance the metabolic fitness of CAR-T cells, leading to improved tumor killing capacity. Together, these results suggest that broad-spectrum ABX deplete metabolically active commensals whose metabolites are essential for enhancing CAR-T efficacy, shedding light on the intricate relationship between ABX exposure, microbiome function and their impact on CAR-T cell efficacy. This highlights the potential for modulating the microbiome to augment CAR-T immunotherapy.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Rehman, Abdur
|0 0000-0003-3785-2007
|b 1
700 1 _ |a Rehman, Lubna
|0 0000-0002-5832-6578
|b 2
700 1 _ |a Darbaniyan, Faezeh
|b 3
700 1 _ |a Blumenberg, Viktoria
|0 P:(DE-He78)979a7f7b1a3e8638bbb9f838555ee44c
|b 4
700 1 _ |a Schubert, Maria-Luisa
|0 0009-0000-7853-4465
|b 5
700 1 _ |a Mor, Uria
|b 6
700 1 _ |a Zamir, Eli
|0 P:(DE-He78)db5f30359487e0d187d7f7f18eb7750f
|b 7
700 1 _ |a Schmidt, Sabine
|0 P:(DE-He78)d6e2a991c1003a27b302b66a5477e6cd
|b 8
700 1 _ |a Hayase, Tomo
|b 9
700 1 _ |a Chia-Chi, Chang
|0 0000-0003-0050-1705
|b 10
700 1 _ |a McDaniel, Lauren Kelley
|0 0009-0005-1698-6657
|b 11
700 1 _ |a Flores, Ivonne
|b 12
700 1 _ |a Strati, Paolo
|b 13
700 1 _ |a Nair, Ranjit
|b 14
700 1 _ |a Chihara, Dai
|0 0000-0002-1153-2294
|b 15
700 1 _ |a Fayad, Luis E
|b 16
700 1 _ |a Ahmed, Sairah
|0 0000-0001-7302-8299
|b 17
700 1 _ |a Iyer, Swaminathan P
|b 18
700 1 _ |a Wang, Michael L
|0 0000-0001-9748-5486
|b 19
700 1 _ |a Jain, Preetesh
|0 0000-0003-2735-168X
|b 20
700 1 _ |a Nastoupil, Loretta J
|0 0000-0001-6071-8610
|b 21
700 1 _ |a Westin, Jason R
|0 0000-0002-1824-2337
|b 22
700 1 _ |a Arora, Reetakshi
|b 23
700 1 _ |a Turner, Joel Gordon
|0 0009-0002-6081-3866
|b 24
700 1 _ |a Khawaja, Fareed
|b 25
700 1 _ |a Wu, Ranran
|b 26
700 1 _ |a Dennison, Jennifer B
|0 0000-0003-3067-0972
|b 27
700 1 _ |a Menges, Meghan
|b 28
700 1 _ |a Hidalgo-Vargas, Melanie
|b 29
700 1 _ |a Reid, Kayla M
|b 30
700 1 _ |a Davila, Marco L
|0 0000-0002-6270-3065
|b 31
700 1 _ |a Dreger, Peter
|b 32
700 1 _ |a Korell, Felix
|b 33
700 1 _ |a Schmitt, Anita
|b 34
700 1 _ |a Tanner, Mark R
|b 35
700 1 _ |a Champlin, Richard E
|0 0000-0002-4314-5037
|b 36
700 1 _ |a Flowers, Christopher R
|b 37
700 1 _ |a Shpall, Elizabeth J
|b 38
700 1 _ |a Hanash, Samir
|b 39
700 1 _ |a Neelapu, Sattva S
|0 0000-0003-1045-4914
|b 40
700 1 _ |a Schmitt, Michael
|b 41
700 1 _ |a Subklewe, Marion
|0 0000-0003-3905-0251
|b 42
700 1 _ |a Fahrmann, Johannes
|0 0000-0001-5088-0198
|b 43
700 1 _ |a Stein-Thoeringer, Christoph
|b 44
700 1 _ |a Elinav, Eran
|0 P:(DE-He78)725ad944da4e1ea60389fe9dbbed2c7c
|b 45
|u dkfz
700 1 _ |a Jain, Michael D
|0 0000-0002-7789-1257
|b 46
700 1 _ |a Hayase, Eiko
|0 0000-0002-4824-8844
|b 47
700 1 _ |a Jenq, Robert R
|b 48
700 1 _ |a Saini, Neeraj Y
|b 49
773 _ _ |a 10.1182/blood.2024025366
|g p. blood.2024025366
|0 PERI:(DE-600)1468538-3
|n 8
|p 823-839
|t Blood
|v 145
|y 2025
|x 0006-4971
909 C O |p VDB
|o oai:inrepo02.dkfz.de:294332
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)979a7f7b1a3e8638bbb9f838555ee44c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)db5f30359487e0d187d7f7f18eb7750f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)d6e2a991c1003a27b302b66a5477e6cd
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 42
|6 0000-0003-3905-0251
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 45
|6 P:(DE-He78)725ad944da4e1ea60389fe9dbbed2c7c
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BLOOD : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b BLOOD : 2022
|d 2023-10-21
920 1 _ |0 I:(DE-He78)D480-20160331
|k D480
|l Mikrobiom und Krebs
|x 0
920 1 _ |0 I:(DE-He78)MU01-20160331
|k MU01
|l DKTK Koordinierungsstelle München
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D480-20160331
980 _ _ |a I:(DE-He78)MU01-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21