Home > Publications database > Accurate and sensitive interactome profiling using a quantitative protein-fragment complementation assay. > print |
001 | 294334 | ||
005 | 20241028182247.0 | ||
024 | 7 | _ | |a 10.1016/j.crmeth.2024.100880 |2 doi |
024 | 7 | _ | |a pmid:39437715 |2 pmid |
037 | _ | _ | |a DKFZ-2024-02167 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Lazarewicz, Natalia |b 0 |
245 | _ | _ | |a Accurate and sensitive interactome profiling using a quantitative protein-fragment complementation assay. |
260 | _ | _ | |a Cambridge, MA |c 2024 |b Cell Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1730124242_1392 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a DKFZ-ZMBH Alliance |
520 | _ | _ | |a An accurate description of protein-protein interaction (PPI) networks is key to understanding the molecular mechanisms underlying cellular systems. Here, we constructed genome-wide libraries of yeast strains to systematically probe protein-protein interactions using NanoLuc Binary Technology (NanoBiT), a quantitative protein-fragment complementation assay (PCA) based on the NanoLuc luciferase. By investigating an array of well-documented PPIs as well as the interactome of four proteins with varying levels of characterization-including the well-studied nonsense-mediated mRNA decay (NMD) regulator Upf1 and the SCF complex subunits Cdc53 and Met30-we demonstrate that ratiometric NanoBiT measurements enable highly precise and sensitive mapping of PPIs. This work provides a foundation for employing NanoBiT in the assembly of more comprehensive and accurate protein interaction maps as well as in their functional investigation. |
536 | _ | _ | |a 311 - Zellbiologie und Tumorbiologie (POF4-311) |0 G:(DE-HGF)POF4-311 |c POF4-311 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a CP: Systems biology |2 Other |
650 | _ | 7 | |a Cdc53 |2 Other |
650 | _ | 7 | |a Irc20 |2 Other |
650 | _ | 7 | |a Met30 |2 Other |
650 | _ | 7 | |a Nam7 |2 Other |
650 | _ | 7 | |a NanoBiT |2 Other |
650 | _ | 7 | |a Saccharomyces cerevisiae |2 Other |
650 | _ | 7 | |a Upf1 |2 Other |
650 | _ | 7 | |a budding yeast |2 Other |
650 | _ | 7 | |a interactome |2 Other |
650 | _ | 7 | |a protein-protein interaction |2 Other |
650 | _ | 7 | |a Saccharomyces cerevisiae Proteins |2 NLM Chemicals |
650 | _ | 7 | |a Luciferases |0 EC 1.13.12.- |2 NLM Chemicals |
650 | _ | 2 | |a Protein Interaction Mapping: methods |2 MeSH |
650 | _ | 2 | |a Saccharomyces cerevisiae: genetics |2 MeSH |
650 | _ | 2 | |a Saccharomyces cerevisiae: metabolism |2 MeSH |
650 | _ | 2 | |a Protein Interaction Maps |2 MeSH |
650 | _ | 2 | |a Saccharomyces cerevisiae Proteins: metabolism |2 MeSH |
650 | _ | 2 | |a Saccharomyces cerevisiae Proteins: genetics |2 MeSH |
650 | _ | 2 | |a Luciferases: genetics |2 MeSH |
650 | _ | 2 | |a Luciferases: metabolism |2 MeSH |
700 | 1 | _ | |a Le Dez, Gaëlle |b 1 |
700 | 1 | _ | |a Cerjani, Romina |b 2 |
700 | 1 | _ | |a Runeshaw, Lunelys |b 3 |
700 | 1 | _ | |a Meurer, Matthias |b 4 |
700 | 1 | _ | |a Knop, Michael |0 P:(DE-He78)03ae15a30a7fa7191475148bf4e7f581 |b 5 |u dkfz |
700 | 1 | _ | |a Wysocki, Robert |b 6 |
700 | 1 | _ | |a Rabut, Gwenaël |b 7 |
773 | _ | _ | |a 10.1016/j.crmeth.2024.100880 |g Vol. 4, no. 10, p. 100880 - |0 PERI:(DE-600)3091714-1 |n 10 |p 100880 |t Cell reports / Methods |v 4 |y 2024 |x 2667-2375 |
909 | C | O | |o oai:inrepo02.dkfz.de:294334 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)03ae15a30a7fa7191475148bf4e7f581 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-311 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Zellbiologie und Tumorbiologie |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CELL REP METHODS : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-04-27T10:46:44Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-04-27T10:46:44Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2022-04-27T10:46:44Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-27 |
920 | 1 | _ | |0 I:(DE-He78)A260-20160331 |k A260 |l A260 Zellmorphogenese und Signalübermittlung |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)A260-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|