001     294336
005     20250310103210.0
024 7 _ |a 10.1002/1878-0261.13756
|2 doi
024 7 _ |a pmid:39462997
|2 pmid
024 7 _ |a 1574-7891
|2 ISSN
024 7 _ |a 1878-0261
|2 ISSN
024 7 _ |a altmetric:169807705
|2 altmetric
037 _ _ |a DKFZ-2024-02169
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Phillips, Emma
|0 P:(DE-He78)830be4979a39935ac6272eaebad5982a
|b 0
|e First author
|u dkfz
245 _ _ |a Malformin C preferentially kills glioblastoma stem-like cells via concerted induction of proteotoxic stress and autophagic flux blockade.
260 _ _ |a Hoboken, NJ
|c 2025
|b John Wiley & Sons, Inc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1741599076_15764
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:B067#LA:B067# / 2025 Mar;19(3):785-807
520 _ _ |a Glioblastoma is a highly aggressive brain tumor for which there is no cure. The dire prognosis of this disease is largely attributable to a high level of heterogeneity, including the presence of a subpopulation of tumor-initiating glioblastoma stem-like cells (GSCs), which are refractory to chemo- and radiotherapy. Here, in an unbiased marine-derived fungal extract screen, together with bioguided dereplication based on high-resolution mass spectrometry, we identified malformin C to preferentially induce cell death in patient-derived GSCs and explore the potential of this cyclic peptide as a therapeutic agent for glioblastoma. Malformin C significantly reduced tumor growth in an in vivo xenograft model of glioblastoma. Using transcriptomics and chemoproteomics, we found that malformin C binds to many proteins, leading to their aggregation, and rapidly induces the unfolded protein response, including autophagy, in GSCs. Crucially, chemical inhibition of translation using cycloheximide rescued malformin C-induced cell death in GSCs, demonstrating that the proteotoxic effect of the compound is necessary for its cytotoxicity. At the same time, malformin C appears to accumulate in lysosomes, disrupting autophagic flux, and driving cells to death. Supporting this, malformin C synergizes with chloroquine, an inhibitor of autophagy. Strikingly, we observed that autophagic flux is differentially regulated in GSCs compared with normal astrocytes. The sensitivity of GSCs to malformin C highlights the relevance of proteostasis and autophagy as a therapeutic vulnerability in glioblastoma.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a autophagy
|2 Other
650 _ 7 |a cancer
|2 Other
650 _ 7 |a compound screen
|2 Other
650 _ 7 |a glioblastoma
|2 Other
650 _ 7 |a proteostasis
|2 Other
650 _ 7 |a stem cells
|2 Other
650 _ 7 |a unfolded protein response
|2 Other
700 1 _ |a van Enk, Sizèd
|0 P:(DE-He78)182bfcd26a8ff245bf9d349bed715e33
|b 1
|u dkfz
700 1 _ |a Kildgaard, Sara
|b 2
700 1 _ |a Schlue, Silja
|0 P:(DE-He78)880900065fdfb634b00cd591b801ee42
|b 3
|u dkfz
700 1 _ |a Göttmann, Mona
|0 P:(DE-He78)442ee8f54d846d943023a916889feb8e
|b 4
700 1 _ |a Jennings, Lauren Victoria
|0 P:(DE-He78)f9436ab13c30938772ee246bd6920734
|b 5
700 1 _ |a Bethke, Frederic
|0 P:(DE-He78)06d81b4a485d027b97543964b7035573
|b 6
|u dkfz
700 1 _ |a Müller, Gabriele
|0 P:(DE-He78)e490480a4e3d9a6a3a4f1408ca599590
|b 7
|u dkfz
700 1 _ |a Herold-Mende, Christel
|b 8
700 1 _ |a Pastor-Flores, Daniel
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Schneider, Martin
|0 P:(DE-He78)0d37cc734b95fed555f2244d6fee6320
|b 10
|u dkfz
700 1 _ |a Helm, Dominic
|0 P:(DE-He78)daaed5a5b968028e6e95d273150d5ab1
|b 11
|u dkfz
700 1 _ |a Ostenfeld Larsen, Thomas
|b 12
700 1 _ |a Goidts, Violaine
|0 0000-0001-9046-4893
|b 13
|e Last author
773 _ _ |a 10.1002/1878-0261.13756
|g p. 1878-0261.13756
|0 PERI:(DE-600)2322586-5
|n 3
|p 785-807
|t Molecular oncology
|v 19
|y 2025
|x 1574-7891
909 C O |p VDB
|o oai:inrepo02.dkfz.de:294336
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)830be4979a39935ac6272eaebad5982a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)182bfcd26a8ff245bf9d349bed715e33
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)880900065fdfb634b00cd591b801ee42
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)442ee8f54d846d943023a916889feb8e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)f9436ab13c30938772ee246bd6920734
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)06d81b4a485d027b97543964b7035573
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)e490480a4e3d9a6a3a4f1408ca599590
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)0d37cc734b95fed555f2244d6fee6320
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)daaed5a5b968028e6e95d273150d5ab1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 0000-0001-9046-4893
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL ONCOL : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-01-06T16:01:33Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-01-06T16:01:33Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2023-01-06T16:01:33Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2023-01-06T16:01:33Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MOL ONCOL : 2022
|d 2023-10-25
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-25
920 2 _ |0 I:(DE-He78)B067-20160331
|k B067
|l B067 Juniorgruppe Brain Tumor Translational Target
|x 0
920 1 _ |0 I:(DE-He78)B067-20160331
|k B067
|l B067 Juniorgruppe Brain Tumor Translational Target
|x 0
920 1 _ |0 I:(DE-He78)A160-20160331
|k A160
|l A160 Redoxregulation
|x 1
920 1 _ |0 I:(DE-He78)W120-20160331
|k W120
|l Proteomics
|x 2
920 0 _ |0 I:(DE-He78)B067-20160331
|k B067
|l B067 Juniorgruppe Brain Tumor Translational Target
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B067-20160331
980 _ _ |a I:(DE-He78)A160-20160331
980 _ _ |a I:(DE-He78)W120-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21