001 | 294338 | ||
005 | 20250203105546.0 | ||
024 | 7 | _ | |a 10.1002/mrm.30359 |2 doi |
024 | 7 | _ | |a pmid:39462473 |2 pmid |
024 | 7 | _ | |a 1522-2594 |2 ISSN |
024 | 7 | _ | |a 0740-3194 |2 ISSN |
037 | _ | _ | |a DKFZ-2024-02171 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Krueger, Felix |b 0 |
245 | _ | _ | |a Deep learning-based whole-brain B1 +-mapping at 7T. |
260 | _ | _ | |a New York, NY [u.a.] |c 2025 |b Wiley-Liss |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1738576495_6792 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #LA:E020# / 2025 Apr;93(4):1700-1711 |
520 | _ | _ | |a This study investigates the feasibility of using complex-valued neural networks (NNs) to estimate quantitative transmit magnetic RF field (B1 +) maps from multi-slice localizer scans with different slice orientations in the human head at 7T, aiming to accelerate subject-specific B1 +-calibration using parallel transmission (pTx).Datasets containing channel-wise B1 +-maps and corresponding multi-slice localizers were acquired in axial, sagittal, and coronal orientation in 15 healthy subjects utilizing an eight-channel pTx transceiver head coil. Training included five-fold cross-validation for four network configurations: NN cx tra $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{tra}} $$ used transversal, NN cx sag $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{sag}} $$ sagittal, NN cx cor $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{cor}} $$ coronal data, and NN cx all $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{all}} $$ was trained on all slice orientations. The resulting maps were compared to B1 +-reference scans using different quality metrics. The proposed network was applied in-vivo at 7T in two unseen test subjects using dynamic kt-point pulses.Predicted B1 +-maps demonstrated a high similarity with measured B1 +-maps across multiple orientations. The estimation matched the reference with a mean relative error in the magnitude of (2.70 ± 2.86)% and mean absolute phase difference of (6.70 ± 1.99)° for transversal, (1.82 ± 0.69)% and (4.25 ± 1.62)° for sagittal ( NN cx sag $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{sag}} $$ ), as well as (1.33 ± 0.27)% and (2.66 ± 0.60)° for coronal slices ( NN cx cor $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{cor}} $$ ) considering brain tissue. NN cx all $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{all}} $$ trained on all orientations enables a robust prediction of B1 +-maps across different orientations. Achieving a homogenous excitation over the whole brain for an in-vivo application displayed the approach's feasibility.This study demonstrates the feasibility of utilizing complex-valued NNs to estimate multi-slice B1 +-maps in different slice orientations from localizer scans in the human brain at 7T. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a 7 tesla |2 Other |
650 | _ | 7 | |a B1+‐mapping |2 Other |
650 | _ | 7 | |a brain |2 Other |
650 | _ | 7 | |a deep learning |2 Other |
650 | _ | 7 | |a parallel transmission |2 Other |
700 | 1 | _ | |a Aigner, Christoph Stefan |0 0000-0003-3618-9610 |b 1 |
700 | 1 | _ | |a Lutz, Max |0 0009-0001-1956-3757 |b 2 |
700 | 1 | _ | |a Riemann, Layla Tabea |0 0000-0001-5411-7288 |b 3 |
700 | 1 | _ | |a Degenhardt, Katja |b 4 |
700 | 1 | _ | |a Hadjikiriakos, Kimon |0 0009-0002-8625-8522 |b 5 |
700 | 1 | _ | |a Zimmermann, Felix Frederik |0 0000-0002-0862-8973 |b 6 |
700 | 1 | _ | |a Hammernik, Kerstin |0 0000-0002-2734-1409 |b 7 |
700 | 1 | _ | |a Schulz-Menger, Jeanette |0 0000-0003-3100-1092 |b 8 |
700 | 1 | _ | |a Schaeffter, Tobias |0 0000-0003-1310-2631 |b 9 |
700 | 1 | _ | |a Schmitter, Sebastian |0 P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e |b 10 |e Last author |u dkfz |
773 | _ | _ | |a 10.1002/mrm.30359 |g p. mrm.30359 |0 PERI:(DE-600)1493786-4 |n 4 |p 1700-1711 |t Magnetic resonance in medicine |v 93 |y 2025 |x 1522-2594 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:294338 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-21 |w ger |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-10-21 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MAGN RESON MED : 2022 |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-21 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-10-21 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-21 |
920 | 2 | _ | |0 I:(DE-He78)E020-20160331 |k E020 |l E020 Med. Physik in der Radiologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E020-20160331 |k E020 |l E020 Med. Physik in der Radiologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E020-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|