001     294338
005     20250203105546.0
024 7 _ |a 10.1002/mrm.30359
|2 doi
024 7 _ |a pmid:39462473
|2 pmid
024 7 _ |a 1522-2594
|2 ISSN
024 7 _ |a 0740-3194
|2 ISSN
037 _ _ |a DKFZ-2024-02171
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Krueger, Felix
|b 0
245 _ _ |a Deep learning-based whole-brain B1 +-mapping at 7T.
260 _ _ |a New York, NY [u.a.]
|c 2025
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738576495_6792
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:E020# / 2025 Apr;93(4):1700-1711
520 _ _ |a This study investigates the feasibility of using complex-valued neural networks (NNs) to estimate quantitative transmit magnetic RF field (B1 +) maps from multi-slice localizer scans with different slice orientations in the human head at 7T, aiming to accelerate subject-specific B1 +-calibration using parallel transmission (pTx).Datasets containing channel-wise B1 +-maps and corresponding multi-slice localizers were acquired in axial, sagittal, and coronal orientation in 15 healthy subjects utilizing an eight-channel pTx transceiver head coil. Training included five-fold cross-validation for four network configurations: NN cx tra $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{tra}} $$ used transversal, NN cx sag $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{sag}} $$ sagittal, NN cx cor $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{cor}} $$ coronal data, and NN cx all $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{all}} $$ was trained on all slice orientations. The resulting maps were compared to B1 +-reference scans using different quality metrics. The proposed network was applied in-vivo at 7T in two unseen test subjects using dynamic kt-point pulses.Predicted B1 +-maps demonstrated a high similarity with measured B1 +-maps across multiple orientations. The estimation matched the reference with a mean relative error in the magnitude of (2.70 ± 2.86)% and mean absolute phase difference of (6.70 ± 1.99)° for transversal, (1.82 ± 0.69)% and (4.25 ± 1.62)° for sagittal ( NN cx sag $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{sag}} $$ ), as well as (1.33 ± 0.27)% and (2.66 ± 0.60)° for coronal slices ( NN cx cor $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{cor}} $$ ) considering brain tissue. NN cx all $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{all}} $$ trained on all orientations enables a robust prediction of B1 +-maps across different orientations. Achieving a homogenous excitation over the whole brain for an in-vivo application displayed the approach's feasibility.This study demonstrates the feasibility of utilizing complex-valued NNs to estimate multi-slice B1 +-maps in different slice orientations from localizer scans in the human brain at 7T.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a 7 tesla
|2 Other
650 _ 7 |a B1+‐mapping
|2 Other
650 _ 7 |a brain
|2 Other
650 _ 7 |a deep learning
|2 Other
650 _ 7 |a parallel transmission
|2 Other
700 1 _ |a Aigner, Christoph Stefan
|0 0000-0003-3618-9610
|b 1
700 1 _ |a Lutz, Max
|0 0009-0001-1956-3757
|b 2
700 1 _ |a Riemann, Layla Tabea
|0 0000-0001-5411-7288
|b 3
700 1 _ |a Degenhardt, Katja
|b 4
700 1 _ |a Hadjikiriakos, Kimon
|0 0009-0002-8625-8522
|b 5
700 1 _ |a Zimmermann, Felix Frederik
|0 0000-0002-0862-8973
|b 6
700 1 _ |a Hammernik, Kerstin
|0 0000-0002-2734-1409
|b 7
700 1 _ |a Schulz-Menger, Jeanette
|0 0000-0003-3100-1092
|b 8
700 1 _ |a Schaeffter, Tobias
|0 0000-0003-1310-2631
|b 9
700 1 _ |a Schmitter, Sebastian
|0 P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e
|b 10
|e Last author
|u dkfz
773 _ _ |a 10.1002/mrm.30359
|g p. mrm.30359
|0 PERI:(DE-600)1493786-4
|n 4
|p 1700-1711
|t Magnetic resonance in medicine
|v 93
|y 2025
|x 1522-2594
909 C O |p VDB
|o oai:inrepo02.dkfz.de:294338
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON MED : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 2 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21