000294399 001__ 294399
000294399 005__ 20241120140038.0
000294399 0247_ $$2doi$$a10.1088/1361-6560/ad8e2a
000294399 0247_ $$2pmid$$apmid:39488071
000294399 0247_ $$2ISSN$$a0031-9155
000294399 0247_ $$2ISSN$$a1361-6560
000294399 037__ $$aDKFZ-2024-02228
000294399 041__ $$aEnglish
000294399 082__ $$a530
000294399 1001_ $$00000-0002-7502-0730$$aXiao, Fan$$b0
000294399 245__ $$aPrompt gamma emission prediction using a long short-term memory network.
000294399 260__ $$aBristol$$bIOP Publ.$$c2024
000294399 3367_ $$2DRIVER$$aarticle
000294399 3367_ $$2DataCite$$aOutput Types/Journal article
000294399 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1732107561_28810
000294399 3367_ $$2BibTeX$$aARTICLE
000294399 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000294399 3367_ $$00$$2EndNote$$aJournal Article
000294399 500__ $$a Physics in Medicine & Biology, Volume 69, Number 23 , 2024 Phys. Med. Biol. 235003
000294399 520__ $$aTo present a long short-term memory (LSTM)-based prompt gamma (PG) emission prediction method for proton therapy.Computed tomography (CT) scans of 33 patients with a prostate tumor were included in the dataset. A set of 10 million histories proton pencil beam (PB)s was generated for Monte Carlo (MC) dose and PG simulation. For training (20 patients) and validation (3 patients), over 6000 PBs at 150, 175 and 200 MeV were simulated. 3D relative stopping power (RSP), PG and dose cuboids that included the PB were extracted. Three models were trained, validated and tested based on an LSTM-based network: (1) input RSP and output PG, (2) input RSP with dose and output PG (single-energy), and (3) input RSP/dose and output PG (multi-energy). 540 PBs at each of the four energy levels (150, 175, 200, and 125-210 MeV) were simulated across 10 patients to test the three models. The gamma passing rate (2%/2mm) and PG range shift were evaluated and compared among the three models.The model with input RSP/dose and output PG (multi-energy) showed the best performance in terms of gamma passing rate and range shift metrics. Its mean gamma passing rate of testing PBs of 125-210 MeV was 98.5% and the worst case was 92.8%. Its mean absolute range shift between predicted and MC PGs was 0.15 mm, where the maximum shift was 1.1mm. The prediction time of our models was within 130 ms per PB.We developed a sub-second LSTM-based PG emission prediction method. Its accuracy in prostate patients has been confirmed across an extensive range of proton energies.
000294399 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000294399 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000294399 650_7 $$2Other$$aLSTM
000294399 650_7 $$2Other$$adeep learning
000294399 650_7 $$2Other$$aprompt gamma
000294399 650_7 $$2Other$$aproton therapy
000294399 650_7 $$2Other$$arange verification
000294399 7001_ $$aRadonic, Domagoj$$b1
000294399 7001_ $$aKriechbaum, Michael$$b2
000294399 7001_ $$0P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aWahl, Niklas$$b3$$udkfz
000294399 7001_ $$0P:(DE-He78)05d1465abf6918875d2df2781d7aec35$$aNeishabouri, Ahmad$$b4$$udkfz
000294399 7001_ $$aDelopoulos, Nikolaos$$b5
000294399 7001_ $$00000-0001-7779-6690$$aParodi, Katia$$b6
000294399 7001_ $$aCorradini, Stefanie$$b7
000294399 7001_ $$0P:(DE-HGF)0$$aBelka, Claus$$b8
000294399 7001_ $$aKurz, Christopher$$b9
000294399 7001_ $$00000-0003-1707-4068$$aLandry, Guillaume$$b10
000294399 7001_ $$aDedes, Georgios$$b11
000294399 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/ad8e2a$$n23$$p235003$$tPhysics in medicine and biology$$v69$$x0031-9155$$y2024
000294399 909CO $$ooai:inrepo02.dkfz.de:294399$$pVDB
000294399 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000294399 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)05d1465abf6918875d2df2781d7aec35$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000294399 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000294399 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000294399 9141_ $$y2024
000294399 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-26$$wger
000294399 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
000294399 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
000294399 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
000294399 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
000294399 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
000294399 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-26
000294399 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-26
000294399 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
000294399 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2022$$d2023-08-26
000294399 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
000294399 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
000294399 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
000294399 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
000294399 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000294399 9201_ $$0I:(DE-He78)E050-20160331$$kE050$$lE050 KKE Strahlentherapie$$x1
000294399 9201_ $$0I:(DE-He78)MU01-20160331$$kMU01$$lDKTK Koordinierungsstelle München$$x2
000294399 980__ $$ajournal
000294399 980__ $$aVDB
000294399 980__ $$aI:(DE-He78)E040-20160331
000294399 980__ $$aI:(DE-He78)E050-20160331
000294399 980__ $$aI:(DE-He78)MU01-20160331
000294399 980__ $$aUNRESTRICTED