000294765 001__ 294765
000294765 005__ 20241213150655.0
000294765 0247_ $$2doi$$a10.1016/j.freeradbiomed.2024.11.004
000294765 0247_ $$2pmid$$apmid:39515595
000294765 0247_ $$2ISSN$$a0891-5849
000294765 0247_ $$2ISSN$$a1873-4596
000294765 0247_ $$2altmetric$$aaltmetric:170452149
000294765 037__ $$aDKFZ-2024-02480
000294765 041__ $$aEnglish
000294765 082__ $$a610
000294765 1001_ $$aZimmermann, Jannik$$b0
000294765 245__ $$aTsa1 is the dominant peroxide scavenger and a source of H2O2-dependent GSSG production in yeast.
000294765 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2025
000294765 3367_ $$2DRIVER$$aarticle
000294765 3367_ $$2DataCite$$aOutput Types/Journal article
000294765 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734098796_19441
000294765 3367_ $$2BibTeX$$aARTICLE
000294765 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000294765 3367_ $$00$$2EndNote$$aJournal Article
000294765 500__ $$aDKFZ-ZMBH Alliance
000294765 520__ $$aHydrogen peroxide (H2O2) is an important biological molecule, functioning both as a second messenger in cell signaling and, especially at higher concentrations, as a cause of cell damage. Cells harbor multiple enzymes that have peroxide reducing activity in vitro. However, the contribution of each of these enzymes towards peroxide scavenging in vivo is less clear. Therefore, to directly investigate in vivo peroxide scavenging, we used the genetically encoded peroxide probes, roGFP2-Tsa2ΔCR and HyPer7, to systematically screen the peroxide scavenging capacity of baker's yeast thiol and heme peroxidase mutants. We show that the 2-Cys peroxiredoxin Tsa1 alone is responsible for almost all exogenous H2O2 and tert-butyl hydroperoxide scavenging. Furthermore, Tsa1 can become an important source of H2O2-dependent cytosolic glutathione disulfide production. The two catalases and cytochrome c peroxidase only produce observable scavenging defects at higher H2O2 concentrations when these three heme peroxidases are removed in combination. We also analyzed the reduction of Tsa1 in vitro, revealing that the enzyme is efficiently reduced by thioredoxin-1 with a rate constant of 2.8 × 106 M-1s-1 but not by glutaredoxin-2. Tsa1 reduction by reduced glutathione occurs nonenzymatically with a rate constant of 2.9 M-1s-1. Hence, the observed Tsa1-dependent glutathione disulfide production in yeast probably requires the oxidation of thioredoxins. Our findings clarify the importance of the various thiol and heme peroxidases for peroxide removal and suggest that most thiol peroxidases have alternative or specialized functions in specific subcellular compartments.
000294765 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000294765 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000294765 650_7 $$2Other$$aCatalase
000294765 650_7 $$2Other$$aH(2)O(2) scavenging
000294765 650_7 $$2Other$$aHeme peroxidase
000294765 650_7 $$2Other$$aHyPer7
000294765 650_7 $$2Other$$aPeroxiredoxin
000294765 650_7 $$2Other$$aThiol peroxidase
000294765 650_7 $$2Other$$aroGFP2
000294765 7001_ $$aLang, Lukas$$b1
000294765 7001_ $$aCalabrese, Gaetano$$b2
000294765 7001_ $$aLaporte, Hugo$$b3
000294765 7001_ $$aAmponsah, Prince S$$b4
000294765 7001_ $$aMichalk, Christoph$$b5
000294765 7001_ $$aSukmann, Tobias$$b6
000294765 7001_ $$aOestreicher, Julian$$b7
000294765 7001_ $$aTursch, Anja$$b8
000294765 7001_ $$aPeker, Esra$$b9
000294765 7001_ $$0P:(DE-HGF)0$$aOwusu, Theresa N E$$b10
000294765 7001_ $$aWeith, Matthias$$b11
000294765 7001_ $$aRoma, Leticia Prates$$b12
000294765 7001_ $$aDeponte, Marcel$$b13
000294765 7001_ $$aRiemer, Jan$$b14
000294765 7001_ $$aMorgan, Bruce$$b15
000294765 773__ $$0PERI:(DE-600)1483653-1$$a10.1016/j.freeradbiomed.2024.11.004$$gVol. 226, p. 408 - 420$$p408 - 420$$tFree radical biology and medicine$$v226$$x0891-5849$$y2025
000294765 909CO $$ooai:inrepo02.dkfz.de:294765$$pVDB
000294765 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000294765 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000294765 9141_ $$y2024
000294765 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-28$$wger
000294765 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFREE RADICAL BIO MED : 2022$$d2023-08-28
000294765 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-28
000294765 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-28
000294765 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-28
000294765 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-28
000294765 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-28
000294765 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-28
000294765 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-28
000294765 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-28
000294765 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-28
000294765 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-28
000294765 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-28
000294765 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFREE RADICAL BIO MED : 2022$$d2023-08-28
000294765 9201_ $$0I:(DE-He78)A160-20160331$$kA160$$lA160 Redoxregulation$$x0
000294765 980__ $$ajournal
000294765 980__ $$aVDB
000294765 980__ $$aI:(DE-He78)A160-20160331
000294765 980__ $$aUNRESTRICTED