Home > User submitted records > The remission status of AML patients after allo-HCT is associated with a distinct single-cell bone marrow T-cell signature > print |
001 | 294790 | ||
005 | 20241204090116.0 | ||
024 | 7 | _ | |a 10.1182/blood.2023021815 |2 doi |
024 | 7 | _ | |a 0006-4971 |2 ISSN |
024 | 7 | _ | |a 1528-0020 |2 ISSN |
037 | _ | _ | |a DKFZ-2024-02502 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Mathioudaki, Anna |0 P:(DE-He78)fc0c97c9d01deff15d0a1f0cb8402459 |b 0 |u dkfz |
245 | _ | _ | |a The remission status of AML patients after allo-HCT is associated with a distinct single-cell bone marrow T-cell signature |
260 | _ | _ | |a Washington, DC |c 2024 |b American Society of Hematology |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1733298930_24286 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Acute myeloid leukemia (AML) is a hematologic malignancy for which allogeneic hematopoietic cell transplantation (allo-HCT) often remains the only curative therapeutic approach. However, incapability of T cells to recognize and eliminate residual leukemia stem cells might lead to an insufficient graft-versus-leukemia (GVL) effect and relapse. Here, we performed single-cell RNA-sequencing (scRNA-seq) on bone marrow (BM) T lymphocytes and CD34+ cells of 6 patients with AML 100 days after allo-HCT to identify T-cell signatures associated with either imminent relapse (REL) or durable complete remission (CR). We observed a higher frequency of cytotoxic CD8+ effector and gamma delta (γδ) T cells in CR vs REL samples. Pseudotime and gene regulatory network analyses revealed that CR CD8+ T cells were more advanced in maturation and had a stronger cytotoxicity signature, whereas REL samples were characterized by inflammatory tumor necrosis factor/NF-κB signaling and an immunosuppressive milieu. We identified ADGRG1/GPR56 as a surface marker enriched in CR CD8+ T cells and confirmed in a CD33-directed chimeric antigen receptor T cell/AML coculture model that GPR56 becomes upregulated on T cells upon antigen encounter and elimination of AML cells. We show that GPR56 continuously increases at the protein level on CD8+ T cells after allo-HCT and confirm faster interferon gamma (IFN-γ) secretion upon re-exposure to matched, but not unmatched, recipient AML cells in the GPR56+ vs GPR56- CD8+ T-cell fraction. Together, our data provide a single-cell reference map of BM-derived T cells after allo-HCT and propose GPR56 expression dynamics as a surrogate for antigen encounter after allo-HCT. |
536 | _ | _ | |a 311 - Zellbiologie und Tumorbiologie (POF4-311) |0 G:(DE-HGF)POF4-311 |c POF4-311 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: inrepo02.dkfz.de |
700 | 1 | _ | |a Wang, Xizhe |b 1 |
700 | 1 | _ | |a Sedloev, David |b 2 |
700 | 1 | _ | |a Huth, Richard |b 3 |
700 | 1 | _ | |a Kamal, Aryan |b 4 |
700 | 1 | _ | |a Hundemer, Michael |b 5 |
700 | 1 | _ | |a Liu, Yi |b 6 |
700 | 1 | _ | |a Vasileiou, Spyridoula |b 7 |
700 | 1 | _ | |a Lulla, Premal |0 0000-0002-7707-2331 |b 8 |
700 | 1 | _ | |a Müller-Tidow, Carsten |b 9 |
700 | 1 | _ | |a Dreger, Peter |b 10 |
700 | 1 | _ | |a Luft, Thomas |b 11 |
700 | 1 | _ | |a Sauer, Tim |b 12 |
700 | 1 | _ | |a Schmitt, Michael |b 13 |
700 | 1 | _ | |a Zaugg, Judith B. |0 0000-0001-8324-4040 |b 14 |
700 | 1 | _ | |a Pabst, Caroline |b 15 |
773 | _ | _ | |a 10.1182/blood.2023021815 |g Vol. 143, no. 13, p. 1269 - 1281 |0 PERI:(DE-600)1468538-3 |n 13 |p 1269 - 1281 |t Blood |v 143 |y 2024 |x 0006-4971 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)fc0c97c9d01deff15d0a1f0cb8402459 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-311 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Zellbiologie und Tumorbiologie |x 0 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-21 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-10-21 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BLOOD : 2022 |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-21 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-21 |
915 | _ | _ | |a IF >= 20 |0 StatID:(DE-HGF)9920 |2 StatID |b BLOOD : 2022 |d 2023-10-21 |
920 | 1 | _ | |0 I:(DE-He78)B450-20160331 |k B450 |l Künstl. Intelligenz in der Onkologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a USER |
980 | _ | _ | |a VDBRELEVANT |
980 | _ | _ | |a I:(DE-He78)B450-20160331 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|