001     294790
005     20241204090116.0
024 7 _ |a 10.1182/blood.2023021815
|2 doi
024 7 _ |a 0006-4971
|2 ISSN
024 7 _ |a 1528-0020
|2 ISSN
037 _ _ |a DKFZ-2024-02502
082 _ _ |a 610
100 1 _ |a Mathioudaki, Anna
|0 P:(DE-He78)fc0c97c9d01deff15d0a1f0cb8402459
|b 0
|u dkfz
245 _ _ |a The remission status of AML patients after allo-HCT is associated with a distinct single-cell bone marrow T-cell signature
260 _ _ |a Washington, DC
|c 2024
|b American Society of Hematology
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1733298930_24286
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Acute myeloid leukemia (AML) is a hematologic malignancy for which allogeneic hematopoietic cell transplantation (allo-HCT) often remains the only curative therapeutic approach. However, incapability of T cells to recognize and eliminate residual leukemia stem cells might lead to an insufficient graft-versus-leukemia (GVL) effect and relapse. Here, we performed single-cell RNA-sequencing (scRNA-seq) on bone marrow (BM) T lymphocytes and CD34+ cells of 6 patients with AML 100 days after allo-HCT to identify T-cell signatures associated with either imminent relapse (REL) or durable complete remission (CR). We observed a higher frequency of cytotoxic CD8+ effector and gamma delta (γδ) T cells in CR vs REL samples. Pseudotime and gene regulatory network analyses revealed that CR CD8+ T cells were more advanced in maturation and had a stronger cytotoxicity signature, whereas REL samples were characterized by inflammatory tumor necrosis factor/NF-κB signaling and an immunosuppressive milieu. We identified ADGRG1/GPR56 as a surface marker enriched in CR CD8+ T cells and confirmed in a CD33-directed chimeric antigen receptor T cell/AML coculture model that GPR56 becomes upregulated on T cells upon antigen encounter and elimination of AML cells. We show that GPR56 continuously increases at the protein level on CD8+ T cells after allo-HCT and confirm faster interferon gamma (IFN-γ) secretion upon re-exposure to matched, but not unmatched, recipient AML cells in the GPR56+ vs GPR56- CD8+ T-cell fraction. Together, our data provide a single-cell reference map of BM-derived T cells after allo-HCT and propose GPR56 expression dynamics as a surrogate for antigen encounter after allo-HCT.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: inrepo02.dkfz.de
700 1 _ |a Wang, Xizhe
|b 1
700 1 _ |a Sedloev, David
|b 2
700 1 _ |a Huth, Richard
|b 3
700 1 _ |a Kamal, Aryan
|b 4
700 1 _ |a Hundemer, Michael
|b 5
700 1 _ |a Liu, Yi
|b 6
700 1 _ |a Vasileiou, Spyridoula
|b 7
700 1 _ |a Lulla, Premal
|0 0000-0002-7707-2331
|b 8
700 1 _ |a Müller-Tidow, Carsten
|b 9
700 1 _ |a Dreger, Peter
|b 10
700 1 _ |a Luft, Thomas
|b 11
700 1 _ |a Sauer, Tim
|b 12
700 1 _ |a Schmitt, Michael
|b 13
700 1 _ |a Zaugg, Judith B.
|0 0000-0001-8324-4040
|b 14
700 1 _ |a Pabst, Caroline
|b 15
773 _ _ |a 10.1182/blood.2023021815
|g Vol. 143, no. 13, p. 1269 - 1281
|0 PERI:(DE-600)1468538-3
|n 13
|p 1269 - 1281
|t Blood
|v 143
|y 2024
|x 0006-4971
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)fc0c97c9d01deff15d0a1f0cb8402459
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BLOOD : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b BLOOD : 2022
|d 2023-10-21
920 1 _ |0 I:(DE-He78)B450-20160331
|k B450
|l Künstl. Intelligenz in der Onkologie
|x 0
980 _ _ |a journal
980 _ _ |a USER
980 _ _ |a VDBRELEVANT
980 _ _ |a I:(DE-He78)B450-20160331


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21