001     294874
005     20241210182915.0
024 7 _ |a 10.48550/ARXIV.2406.02534
|2 doi
037 _ _ |a DKFZ-2024-02584
100 1 _ |a Xiao, Shuhan
|0 P:(DE-He78)d2bf7126723ea8f6005ba141ea3c3e2c
|b 0
|e First author
|u dkfz
245 _ _ |a Enhancing predictive imaging biomarker discovery through treatment effect analysis
260 _ _ |c 2024
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1733825647_31422
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Identifying predictive covariates, which forecast individual treatment effectiveness, is crucial for decision-making across different disciplines such as personalized medicine. These covariates, referred to as biomarkers, are extracted from pre-treatment data, often within randomized controlled trials, and should be distinguished from prognostic biomarkers, which are independent of treatment assignment. Our study focuses on discovering predictive imaging biomarkers, specific image features, by leveraging pre-treatment images to uncover new causal relationships. Unlike labor-intensive approaches relying on handcrafted features prone to bias, we present a novel task of directly learning predictive features from images. We propose an evaluation protocol to assess a model's ability to identify predictive imaging biomarkers and differentiate them from purely prognostic ones by employing statistical testing and a comprehensive analysis of image feature attribution. We explore the suitability of deep learning models originally developed for estimating the conditional average treatment effect (CATE) for this task, which have been assessed primarily for their precision of CATE estimation while overlooking the evaluation of imaging biomarker discovery. Our proof-of-concept analysis demonstrates the feasibility and potential of our approach in discovering and validating predictive imaging biomarkers from synthetic outcomes and real-world image datasets. Our code is available at \url{https://github.com/MIC-DKFZ/predictive_image_biomarker_analysis}.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Image and Video Processing (eess.IV)
|2 Other
650 _ 7 |a Artificial Intelligence (cs.AI)
|2 Other
650 _ 7 |a Computer Vision and Pattern Recognition (cs.CV)
|2 Other
650 _ 7 |a Machine Learning (cs.LG)
|2 Other
650 _ 7 |a FOS: Electrical engineering, electronic engineering, information engineering
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
700 1 _ |a Klein, Lukas
|0 P:(DE-He78)fee0b9e9b2afd400b7afbc6b083cfa4a
|b 1
|u dkfz
700 1 _ |a Petersen, Jens
|0 P:(DE-He78)ce7813ed6ec6ac6cc92e67e89a54ca10
|b 2
700 1 _ |a Vollmuth, Philipp
|0 P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e
|b 3
|u dkfz
700 1 _ |a Jaeger, Paul F.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 5
|e Last author
|u dkfz
773 _ _ |a 10.48550/ARXIV.2406.02534
909 C O |o oai:inrepo02.dkfz.de:294874
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)d2bf7126723ea8f6005ba141ea3c3e2c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)fee0b9e9b2afd400b7afbc6b083cfa4a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)ce7813ed6ec6ac6cc92e67e89a54ca10
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
920 1 _ |0 I:(DE-He78)E290-20160331
|k E290
|l NWG Interaktives maschinelles Lernen
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)E290-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21