001     294877
005     20241210182915.0
024 7 _ |a 10.48550/ARXIV.2403.12834
|2 doi
037 _ _ |a DKFZ-2024-02587
100 1 _ |a Gotkowski, Karol
|0 P:(DE-He78)47726a6f46da663d4584c1c7254a285a
|b 0
|e First author
|u dkfz
245 _ _ |a Embarrassingly Simple Scribble Supervision for 3D Medical Segmentation
260 _ _ |c 2024
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1733825332_31422
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Traditionally, segmentation algorithms require dense annotations for training, demanding significant annotation efforts, particularly within the 3D medical imaging field. Scribble-supervised learning emerges as a possible solution to this challenge, promising a reduction in annotation efforts when creating large-scale datasets. Recently, a plethora of methods for optimized learning from scribbles have been proposed, but have so far failed to position scribble annotation as a beneficial alternative. We relate this shortcoming to two major issues: 1) the complex nature of many methods which deeply ties them to the underlying segmentation model, thus preventing a migration to more powerful state-of-the-art models as the field progresses and 2) the lack of a systematic evaluation to validate consistent performance across the broader medical domain, resulting in a lack of trust when applying these methods to new segmentation problems. To address these issues, we propose a comprehensive scribble supervision benchmark consisting of seven datasets covering a diverse set of anatomies and pathologies imaged with varying modalities. We furthermore propose the systematic use of partial losses, i.e. losses that are only computed on annotated voxels. Contrary to most existing methods, these losses can be seamlessly integrated into state-of-the-art segmentation methods, enabling them to learn from scribble annotations while preserving their original loss formulations. Our evaluation using nnU-Net reveals that while most existing methods suffer from a lack of generalization, the proposed approach consistently delivers state-of-the-art performance. Thanks to its simplicity, our approach presents an embarrassingly simple yet effective solution to the challenges of scribble supervision. Source code as well as our extensive scribble benchmarking suite will be made publicly available upon publication.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Computer Vision and Pattern Recognition (cs.CV)
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
700 1 _ |a Lüth, Carsten
|0 P:(DE-He78)6a78e3a44a8038881d941fb467eb4e19
|b 1
|u dkfz
700 1 _ |a Jäger, Paul F.
|0 P:(DE-He78)04a0b5a49db132d8f00cee326cb743ca
|b 2
|u dkfz
700 1 _ |a Ziegler, Sebastian
|0 P:(DE-He78)ce72738384a651b46bb9b3f92dde8230
|b 3
|u dkfz
700 1 _ |a Krämer, Lars
|0 P:(DE-He78)9491eaed26df05482b258b0cac49375e
|b 4
|u dkfz
700 1 _ |a Denner, Stefan
|0 P:(DE-He78)e35f6a9bd89b1c66d107df8a2325a758
|b 5
|u dkfz
700 1 _ |a Xiao, Shuhan
|0 P:(DE-He78)d2bf7126723ea8f6005ba141ea3c3e2c
|b 6
|u dkfz
700 1 _ |a Disch, Nico
|0 P:(DE-He78)6aeec5fe74dfe54da185a85629cfbf3a
|b 7
|u dkfz
700 1 _ |a Maier-Hein, Klaus H.
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 8
|u dkfz
700 1 _ |a Isensee, Fabian
|0 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa
|b 9
|e Last author
|u dkfz
773 _ _ |a 10.48550/ARXIV.2403.12834
909 C O |o oai:inrepo02.dkfz.de:294877
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)47726a6f46da663d4584c1c7254a285a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)6a78e3a44a8038881d941fb467eb4e19
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)04a0b5a49db132d8f00cee326cb743ca
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)ce72738384a651b46bb9b3f92dde8230
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)9491eaed26df05482b258b0cac49375e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)e35f6a9bd89b1c66d107df8a2325a758
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)d2bf7126723ea8f6005ba141ea3c3e2c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)6aeec5fe74dfe54da185a85629cfbf3a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
920 1 _ |0 I:(DE-He78)E290-20160331
|k E290
|l NWG Interaktives maschinelles Lernen
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)E290-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21