001     294878
005     20241210182915.0
024 7 _ |a 10.48550/ARXIV.2403.06567
|2 doi
037 _ _ |a DKFZ-2024-02588
100 1 _ |a Denner, Stefan
|0 P:(DE-He78)e35f6a9bd89b1c66d107df8a2325a758
|b 0
|e First author
|u dkfz
245 _ _ |a Leveraging Foundation Models for Content-Based Medical Image Retrieval in Radiology
260 _ _ |c 2024
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1733825110_7696
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Content-based image retrieval (CBIR) has the potential to significantly improve diagnostic aid and medical research in radiology. Current CBIR systems face limitations due to their specialization to certain pathologies, limiting their utility. In response, we propose using vision foundation models as powerful and versatile off-the-shelf feature extractors for content-based medical image retrieval. By benchmarking these models on a comprehensive dataset of 1.6 million 2D radiological images spanning four modalities and 161 pathologies, we identify weakly-supervised models as superior, achieving a P@1 of up to 0.594. This performance not only competes with a specialized model but does so without the need for fine-tuning. Our analysis further explores the challenges in retrieving pathological versus anatomical structures, indicating that accurate retrieval of pathological features presents greater difficulty. Despite these challenges, our research underscores the vast potential of foundation models for CBIR in radiology, proposing a shift towards versatile, general-purpose medical image retrieval systems that do not require specific tuning.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Computer Vision and Pattern Recognition (cs.CV)
|2 Other
650 _ 7 |a Information Retrieval (cs.IR)
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
700 1 _ |a Zimmerer, David
|0 P:(DE-He78)c1fcef80eab3d1e4fc187faece1a439c
|b 1
|u dkfz
700 1 _ |a Bounias, Dimitrios
|0 P:(DE-He78)95f361c74f433d336bfd0a95bc9b0eba
|b 2
|u dkfz
700 1 _ |a Bujotzek, Markus
|0 P:(DE-He78)d52d4217d38d20b78d1bc8014e2b0c35
|b 3
|u dkfz
700 1 _ |a Xiao, Shuhan
|0 P:(DE-He78)d2bf7126723ea8f6005ba141ea3c3e2c
|b 4
|u dkfz
700 1 _ |a Kausch, Lisa
|0 P:(DE-He78)4854a5d7f6e812324fd74320396f4178
|b 5
700 1 _ |a Schader, Philipp
|0 P:(DE-He78)2529b97355581f2d933fcfd7908d9ed4
|b 6
|u dkfz
700 1 _ |a Penzkofer, Tobias
|b 7
700 1 _ |a Jäger, Paul F.
|0 P:(DE-He78)04a0b5a49db132d8f00cee326cb743ca
|b 8
|u dkfz
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 9
|e Last author
|u dkfz
773 _ _ |a 10.48550/ARXIV.2403.06567
909 C O |o oai:inrepo02.dkfz.de:294878
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)e35f6a9bd89b1c66d107df8a2325a758
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)c1fcef80eab3d1e4fc187faece1a439c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)95f361c74f433d336bfd0a95bc9b0eba
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)d52d4217d38d20b78d1bc8014e2b0c35
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)d2bf7126723ea8f6005ba141ea3c3e2c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)4854a5d7f6e812324fd74320396f4178
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)2529b97355581f2d933fcfd7908d9ed4
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)04a0b5a49db132d8f00cee326cb743ca
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
920 1 _ |0 I:(DE-He78)E290-20160331
|k E290
|l NWG Interaktives maschinelles Lernen
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)E290-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21