000294923 001__ 294923
000294923 005__ 20241216113642.0
000294923 0247_ $$2doi$$a10.1007/s00520-024-09001-4
000294923 0247_ $$2pmid$$apmid:39656317
000294923 0247_ $$2ISSN$$a0941-4355
000294923 0247_ $$2ISSN$$a1433-7339
000294923 0247_ $$2altmetric$$aaltmetric:171836616
000294923 037__ $$aDKFZ-2024-02630
000294923 041__ $$aEnglish
000294923 082__ $$a610
000294923 1001_ $$00000-0003-0683-8915$$aKoeppel, Maximilian$$b0
000294923 245__ $$aVariability in resistance training trajectories of breast cancer patients undergoing therapy.
000294923 260__ $$aNew York,NY$$bSpringer$$c2025
000294923 3367_ $$2DRIVER$$aarticle
000294923 3367_ $$2DataCite$$aOutput Types/Journal article
000294923 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734345357_24909
000294923 3367_ $$2BibTeX$$aARTICLE
000294923 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000294923 3367_ $$00$$2EndNote$$aJournal Article
000294923 500__ $$apublished online 10 December 2024
000294923 520__ $$aIn resistance training (RT), the change in volume-load from training sessions (TS) to TS is an indicator of training progress. Resulting growth trajectories are likely to differ between individuals. Understanding this variation is important for exercise planning in general, but even more for clinical populations. We investigated this variation in breast cancer patients undergoing treatment.Data of 69 patients from two randomized controlled trails were investigated. They conducted a 12-week RT program. We fitted a quadratic Bayesian regression model to the baseline standardized volume-load over the course of the intervention. We allowed all parameters to vary both between exercises and between individuals.We observed a positive linear component of 0.093 (95% uncertainty interval (UI) 0.058 to 0.120) and a negative quadratic component of - 0.002 (95% UI -0.008 to 0.001) for the mean trajectory of the change in volume-load. For the different exercises, we observed a dispersion for both the linear (0.043, 95% UI 0.018 to 0.082) and the quadratic component (0.002, 95% UI < 0.001 to 0.004). Variation between individual appears to be approximately four times larger. We also observed between-exercise variation within individuals. Extrapolation of the regression model indicates training progression stagnates after 20.6 TS (95% UI 14.8 to 44.4).There is substantial variation in RT response between breast cancer patients undergoing tumor therapy and in-between exercises. The non-linear trajectory indicates that training progression will eventually plateau, demanding periodization and timely modification.BEATE Study: NCT01106820, Date: April 20, 2010; BEST Study: NCT01468766, Date: November 9, 2011.
000294923 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000294923 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000294923 650_7 $$2Other$$aAdjuvant tumor treatment
000294923 650_7 $$2Other$$aBayesian statistics
000294923 650_7 $$2Other$$aExercise oncology
000294923 650_7 $$2Other$$aHierarchical model
000294923 650_7 $$2Other$$aResponse variability
000294923 650_2 $$2MeSH$$aHumans
000294923 650_2 $$2MeSH$$aBreast Neoplasms: therapy
000294923 650_2 $$2MeSH$$aFemale
000294923 650_2 $$2MeSH$$aResistance Training: methods
000294923 650_2 $$2MeSH$$aMiddle Aged
000294923 650_2 $$2MeSH$$aBayes Theorem
000294923 650_2 $$2MeSH$$aAdult
000294923 650_2 $$2MeSH$$aAged
000294923 7001_ $$0P:(DE-He78)a0c2037d9054be26907a05ae520d5756$$aSteindorf, Karen$$b1$$udkfz
000294923 7001_ $$0P:(DE-He78)2def8f8594c8f797f5ed4398258c6cac$$aSchmidt, Martina$$b2$$udkfz
000294923 7001_ $$00000-0002-4147-2958$$aRosenberger, Friederike$$b3
000294923 7001_ $$00000-0002-5971-5436$$aWiskemann, Joachim$$b4
000294923 773__ $$0PERI:(DE-600)1463166-0$$a10.1007/s00520-024-09001-4$$gVol. 33, no. 1, p. 12$$n1$$p12$$tSupportive care in cancer$$v33$$x0941-4355$$y2025
000294923 909CO $$ooai:inrepo02.dkfz.de:294923$$pVDB
000294923 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a0c2037d9054be26907a05ae520d5756$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000294923 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2def8f8594c8f797f5ed4398258c6cac$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000294923 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000294923 9141_ $$y2024
000294923 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-10-21$$wger
000294923 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-10-21$$wger
000294923 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000294923 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000294923 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000294923 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000294923 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000294923 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000294923 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-21
000294923 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPPORT CARE CANCER : 2022$$d2023-10-21
000294923 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000294923 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000294923 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000294923 9201_ $$0I:(DE-He78)C110-20160331$$kC110$$lBewegung, Präventionsforschung und Krebs$$x0
000294923 980__ $$ajournal
000294923 980__ $$aVDB
000294923 980__ $$aI:(DE-He78)C110-20160331
000294923 980__ $$aUNRESTRICTED