000295889 001__ 295889
000295889 005__ 20250423111412.0
000295889 0247_ $$2doi$$a10.1053/j.semnuclmed.2024.11.005
000295889 0247_ $$2pmid$$apmid:39674756
000295889 0247_ $$2ISSN$$a0001-2998
000295889 0247_ $$2ISSN$$a1558-4623
000295889 037__ $$aDKFZ-2024-02704
000295889 041__ $$aEnglish
000295889 082__ $$a610
000295889 1001_ $$0P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2$$aSachpekidis, Christos$$b0$$eFirst author$$udkfz
000295889 245__ $$aRadiomics and Artificial Intelligence Landscape for [18F]FDG PET/CT in Multiple Myeloma.
000295889 260__ $$aDuluth, Minn.$$bSaunders$$c2025
000295889 3367_ $$2DRIVER$$aarticle
000295889 3367_ $$2DataCite$$aOutput Types/Journal article
000295889 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745399599_30951$$xReview Article
000295889 3367_ $$2BibTeX$$aARTICLE
000295889 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000295889 3367_ $$00$$2EndNote$$aJournal Article
000295889 500__ $$a#EA:E060#LA:E060# / 2025 May;55(3):387-395
000295889 520__ $$a[18F]FDG PET/CT is a powerful imaging modality of high performance in multiple myeloma (MM) and is considered the appropriate method for assessing treatment response in this disease. On the other hand, due to the heterogeneous and sometimes complex patterns of bone marrow infiltration in MM, the interpretation of PET/CT can be particularly challenging, hampering interobserver reproducibility and limiting the diagnostic and prognostic ability of the modality. Although many approaches have been developed to address the issue of standardization, none can yet be considered a standard method for interpretation or objective quantification of PET/CT. Therefore, advanced diagnostic quantification approaches are needed to support and potentially guide the management of MM. In recent years, radiomics has emerged as an innovative method for high-throughput mining of image-derived features for clinical decision making, which may be particularly helpful in oncology. In addition, machine learning and deep learning, both subfields of artificial intelligence (AI) closely related to the radiomics process, have been increasingly applied to automated image analysis, offering new possibilities for a standardized evaluation of imaging modalities such as CT, PET/CT and MRI in oncology. In line with this, the initial but steadily growing literature on the application of radiomics and AI-based methods in the field of [18F]FDG PET/CT in MM has already yielded encouraging results, offering a potentially reliable tool towards optimization and standardization of interpretation in this disease. The main results of these studies are presented in this review.
000295889 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000295889 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000295889 7001_ $$aGoldschmidt, Hartmut$$b1
000295889 7001_ $$aEdenbrandt, Lars$$b2
000295889 7001_ $$0P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDimitrakopoulou-Strauss, Antonia$$b3$$eLast author$$udkfz
000295889 773__ $$0PERI:(DE-600)2133379-8$$a10.1053/j.semnuclmed.2024.11.005$$gp. S0001299824001119$$n3$$p387-395$$tSeminars in nuclear medicine$$v55$$x0001-2998$$y2025
000295889 909CO $$ooai:inrepo02.dkfz.de:295889$$pVDB
000295889 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000295889 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000295889 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000295889 9141_ $$y2024
000295889 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-25$$wger
000295889 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
000295889 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
000295889 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-25
000295889 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
000295889 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
000295889 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2023-10-25
000295889 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
000295889 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-25
000295889 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSEMIN NUCL MED : 2022$$d2023-10-25
000295889 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
000295889 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-25
000295889 9202_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000295889 9201_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000295889 9200_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000295889 980__ $$ajournal
000295889 980__ $$aVDB
000295889 980__ $$aI:(DE-He78)E060-20160331
000295889 980__ $$aUNRESTRICTED