001     295908
005     20241227135010.0
024 7 _ |a 10.1016/j.ebiom.2024.105510
|2 doi
024 7 _ |a pmid:39689375
|2 pmid
024 7 _ |a altmetric:172122553
|2 altmetric
037 _ _ |a DKFZ-2024-02721
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Peruchet-Noray, Laia
|b 0
245 _ _ |a Nature or nurture: genetic and environmental predictors of adiposity gain in adults.
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1735303787_21519
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Volume 111, January 2025, 105510
520 _ _ |a Previous prediction models for adiposity gain have not yet achieved sufficient predictive ability for clinical relevance. We investigated whether traditional and genetic factors accurately predict adiposity gain.A 5-year gain of ≥5% in body mass index (BMI) and waist-to-hip ratio (WHR) from baseline were predicted in mid-late adulthood individuals (median of 55 years old at baseline). Proportional hazards models were fitted in 245,699 participants from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort to identify robust environmental predictors. Polygenic risk scores (PRS) of 5 proxies of adiposity [BMI, WHR, and three body shape phenotypes (PCs)] were computed using genetic weights from an independent cohort (UK Biobank). Environmental and genetic models were validated in 29,953 EPIC participants.Environmental models presented a remarkable predictive ability (AUCBMI: 0.69, 95% CI: 0.68-0.70; AUCWHR: 0.75, 95% CI: 0.74-0.77). The genetic geographic distribution for WHR and PC1 (overall adiposity) showed higher predisposition in North than South Europe. Predictive ability of PRSs was null (AUC: ∼0.52) and did not improve when combined with environmental models. However, PRSs of BMI and PC1 showed some prediction ability for BMI gain from self-reported BMI at 20 years old to baseline observation (early adulthood) (AUC: 0.60-0.62).Our study indicates that environmental models to discriminate European individuals at higher risk of adiposity gain can be integrated in standard prevention protocols. PRSs may play a robust role in predicting adiposity gain at early rather than mid-late adulthood suggesting a more important role of genetic factors in this life period.French National Cancer Institute (INCA_N°2019-176) 1220, German Research Foundation (BA 5459/2-1), Instituto de Salud Carlos III (Miguel Servet Program CP21/00058).
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Adiposity gain
|2 Other
650 _ 7 |a Environmental factors
|2 Other
650 _ 7 |a Polygenic risk scores
|2 Other
650 _ 7 |a Prediction
|2 Other
700 1 _ |a Dimou, Niki
|b 1
700 1 _ |a Cordova, Reynalda
|b 2
700 1 _ |a Fontvieille, Emma
|b 3
700 1 _ |a Jansana, Anna
|b 4
700 1 _ |a Gan, Quan
|b 5
700 1 _ |a Breeur, Marie
|b 6
700 1 _ |a Baurecht, Hansjörg
|b 7
700 1 _ |a Bohmann, Patricia
|b 8
700 1 _ |a Konzok, Julian
|b 9
700 1 _ |a Stein, Michael J
|b 10
700 1 _ |a Dahm, Christina C
|b 11
700 1 _ |a Zilhão, Nuno R
|b 12
700 1 _ |a Mellemkjær, Lene
|b 13
700 1 _ |a Tjønneland, Anne
|b 14
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 15
|u dkfz
700 1 _ |a Katzke, Verena
|0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
|b 16
|u dkfz
700 1 _ |a Inan-Eroglu, Elif
|b 17
700 1 _ |a Schulze, Matthias B
|b 18
700 1 _ |a Masala, Giovanna
|b 19
700 1 _ |a Sieri, Sabina
|b 20
700 1 _ |a Simeon, Vittorio
|b 21
700 1 _ |a Matullo, Giuseppe
|b 22
700 1 _ |a Molina-Montes, Esther
|b 23
700 1 _ |a Amiano, Pilar
|b 24
700 1 _ |a Chirlaque, María-Dolores
|b 25
700 1 _ |a Gasque, Alba
|b 26
700 1 _ |a Atkins, Joshua
|b 27
700 1 _ |a Smith-Byrne, Karl
|b 28
700 1 _ |a Ferrari, Pietro
|b 29
700 1 _ |a Viallon, Vivian
|b 30
700 1 _ |a Agudo, Antonio
|b 31
700 1 _ |a Gunter, Marc J
|b 32
700 1 _ |a Bonet, Catalina
|b 33
700 1 _ |a Freisling, Heinz
|b 34
700 1 _ |a Carreras-Torres, Robert
|b 35
773 _ _ |a 10.1016/j.ebiom.2024.105510
|g Vol. 111, p. 105510 -
|0 PERI:(DE-600)2799017-5
|p 105510
|t EBioMedicine
|v 111
|y 2025
|x 2352-3964
909 C O |p VDB
|o oai:inrepo02.dkfz.de:295908
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EBIOMEDICINE : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:51:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:51:17Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:51:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EBIOMEDICINE : 2022
|d 2023-08-26
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-26
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21