000295915 001__ 295915
000295915 005__ 20241222014524.0
000295915 0247_ $$2doi$$a10.3390/cancers16234116
000295915 0247_ $$2pmid$$apmid:39682302
000295915 0247_ $$2altmetric$$aaltmetric:172178595
000295915 037__ $$aDKFZ-2024-02728
000295915 041__ $$aEnglish
000295915 082__ $$a610
000295915 1001_ $$aAlmanza-Aguilera, Enrique$$b0
000295915 245__ $$aPrediagnostic Plasma Nutrimetabolomics and Prostate Cancer Risk: A Nested Case-Control Analysis Within the EPIC Study.
000295915 260__ $$aBasel$$bMDPI$$c2024
000295915 3367_ $$2DRIVER$$aarticle
000295915 3367_ $$2DataCite$$aOutput Types/Journal article
000295915 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734529954_1200
000295915 3367_ $$2BibTeX$$aARTICLE
000295915 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000295915 3367_ $$00$$2EndNote$$aJournal Article
000295915 520__ $$aBackground and Objective: Nutrimetabolomics may reveal novel insights into early metabolic alterations and the role of dietary exposures on prostate cancer (PCa) risk. We aimed to prospectively investigate the associations between plasma metabolite concentrations and PCa risk, including clinically relevant tumor subtypes. Methods: We used a targeted and large-scale metabolomics approach to analyze plasma samples of 851 matched PCa case-control pairs from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Associations between metabolite concentrations and PCa risk were estimated by multivariate conditional logistic regression analysis. False discovery rate (FDR) was used to control for multiple testing correction. Results: Thirty-one metabolites (predominately derivatives of food intake and microbial metabolism) were associated with overall PCa risk and its clinical subtypes (p < 0.05), but none of the associations exceeded the FDR threshold. The strongest positive and negative associations were for dimethylglycine (OR = 2.13; 95% CI 1.16-3.91) with advanced PCa risk (n = 157) and indole-3-lactic acid (OR = 0.28; 95% CI 0.09-0.87) with fatal PCa risk (n = 57), respectively; however, these associations did not survive correction for multiple testing. Conclusions: The results from the current nutrimetabolomics study suggest that apart from early metabolic deregulations, some biomarkers of food intake might be related to PCa risk, especially advanced and fatal PCa. Further independent and larger studies are needed to validate our results.
000295915 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000295915 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000295915 650_7 $$2Other$$aEPIC
000295915 650_7 $$2Other$$anested case–control
000295915 650_7 $$2Other$$anutrimetabolomics
000295915 650_7 $$2Other$$aprostate cancer
000295915 7001_ $$00000-0002-7650-4016$$aMartínez-Huélamo, Miriam$$b1
000295915 7001_ $$aLópez-Hernández, Yamilé$$b2
000295915 7001_ $$aGuiñón-Fort, Daniel$$b3
000295915 7001_ $$00000-0002-7821-8582$$aGuadall, Anna$$b4
000295915 7001_ $$00000-0002-8327-4220$$aCruz, Meryl$$b5
000295915 7001_ $$aPerez-Cornago, Aurora$$b6
000295915 7001_ $$00000-0001-5731-1772$$aRostgaard-Hansen, Agnetha L$$b7
000295915 7001_ $$00000-0003-4385-2097$$aTjønneland, Anne$$b8
000295915 7001_ $$00000-0003-0481-2893$$aDahm, Christina C$$b9
000295915 7001_ $$0P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aKatzke, Verena$$b10$$udkfz
000295915 7001_ $$00000-0002-0830-5277$$aSchulze, Matthias B$$b11
000295915 7001_ $$00000-0002-5758-9069$$aMasala, Giovanna$$b12
000295915 7001_ $$aAgnoli, Claudia$$b13
000295915 7001_ $$00000-0003-2666-414X$$aTumino, Rosario$$b14
000295915 7001_ $$00000-0001-8749-9737$$aRicceri, Fulvio$$b15
000295915 7001_ $$00000-0003-0482-4229$$aLasheras, Cristina$$b16
000295915 7001_ $$aCrous-Bou, Marta$$b17
000295915 7001_ $$00000-0003-4817-0757$$aSánchez, Maria-Jose$$b18
000295915 7001_ $$aAizpurua-Atxega, Amaia$$b19
000295915 7001_ $$00000-0001-9242-6364$$aGuevara, Marcela$$b20
000295915 7001_ $$00000-0002-8452-8472$$aTsilidis, Kostas K$$b21
000295915 7001_ $$00000-0002-1973-7542$$aChatziioannou, Anastasia Chrysovalantou$$b22
000295915 7001_ $$00000-0003-2237-0128$$aWeiderpass, Elisabete$$b23
000295915 7001_ $$aTravis, Ruth C$$b24
000295915 7001_ $$00000-0002-3207-2434$$aWishart, David S$$b25
000295915 7001_ $$00000-0002-8494-4978$$aAndrés-Lacueva, Cristina$$b26
000295915 7001_ $$00000-0002-6236-6804$$aZamora-Ros, Raul$$b27
000295915 773__ $$0PERI:(DE-600)2527080-1$$a10.3390/cancers16234116$$gVol. 16, no. 23, p. 4116 -$$n23$$p4116$$tCancers$$v16$$x2072-6694$$y2024
000295915 909CO $$ooai:inrepo02.dkfz.de:295915$$pVDB
000295915 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000295915 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000295915 9141_ $$y2024
000295915 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCANCERS : 2022$$d2023-10-26
000295915 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000295915 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000295915 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
000295915 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-07-31T16:07:06Z
000295915 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-07-31T16:07:06Z
000295915 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-07-31T16:07:06Z
000295915 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2023-07-31T16:07:06Z
000295915 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
000295915 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
000295915 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000295915 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-26
000295915 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
000295915 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000295915 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-26
000295915 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
000295915 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCANCERS : 2022$$d2023-10-26
000295915 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-26
000295915 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-26
000295915 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000295915 980__ $$ajournal
000295915 980__ $$aVDB
000295915 980__ $$aI:(DE-He78)C020-20160331
000295915 980__ $$aUNRESTRICTED