001     295915
005     20241222014524.0
024 7 _ |a 10.3390/cancers16234116
|2 doi
024 7 _ |a pmid:39682302
|2 pmid
024 7 _ |a altmetric:172178595
|2 altmetric
037 _ _ |a DKFZ-2024-02728
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Almanza-Aguilera, Enrique
|b 0
245 _ _ |a Prediagnostic Plasma Nutrimetabolomics and Prostate Cancer Risk: A Nested Case-Control Analysis Within the EPIC Study.
260 _ _ |a Basel
|c 2024
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734529954_1200
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background and Objective: Nutrimetabolomics may reveal novel insights into early metabolic alterations and the role of dietary exposures on prostate cancer (PCa) risk. We aimed to prospectively investigate the associations between plasma metabolite concentrations and PCa risk, including clinically relevant tumor subtypes. Methods: We used a targeted and large-scale metabolomics approach to analyze plasma samples of 851 matched PCa case-control pairs from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Associations between metabolite concentrations and PCa risk were estimated by multivariate conditional logistic regression analysis. False discovery rate (FDR) was used to control for multiple testing correction. Results: Thirty-one metabolites (predominately derivatives of food intake and microbial metabolism) were associated with overall PCa risk and its clinical subtypes (p < 0.05), but none of the associations exceeded the FDR threshold. The strongest positive and negative associations were for dimethylglycine (OR = 2.13; 95% CI 1.16-3.91) with advanced PCa risk (n = 157) and indole-3-lactic acid (OR = 0.28; 95% CI 0.09-0.87) with fatal PCa risk (n = 57), respectively; however, these associations did not survive correction for multiple testing. Conclusions: The results from the current nutrimetabolomics study suggest that apart from early metabolic deregulations, some biomarkers of food intake might be related to PCa risk, especially advanced and fatal PCa. Further independent and larger studies are needed to validate our results.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a EPIC
|2 Other
650 _ 7 |a nested case–control
|2 Other
650 _ 7 |a nutrimetabolomics
|2 Other
650 _ 7 |a prostate cancer
|2 Other
700 1 _ |a Martínez-Huélamo, Miriam
|0 0000-0002-7650-4016
|b 1
700 1 _ |a López-Hernández, Yamilé
|b 2
700 1 _ |a Guiñón-Fort, Daniel
|b 3
700 1 _ |a Guadall, Anna
|0 0000-0002-7821-8582
|b 4
700 1 _ |a Cruz, Meryl
|0 0000-0002-8327-4220
|b 5
700 1 _ |a Perez-Cornago, Aurora
|b 6
700 1 _ |a Rostgaard-Hansen, Agnetha L
|0 0000-0001-5731-1772
|b 7
700 1 _ |a Tjønneland, Anne
|0 0000-0003-4385-2097
|b 8
700 1 _ |a Dahm, Christina C
|0 0000-0003-0481-2893
|b 9
700 1 _ |a Katzke, Verena
|0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
|b 10
|u dkfz
700 1 _ |a Schulze, Matthias B
|0 0000-0002-0830-5277
|b 11
700 1 _ |a Masala, Giovanna
|0 0000-0002-5758-9069
|b 12
700 1 _ |a Agnoli, Claudia
|b 13
700 1 _ |a Tumino, Rosario
|0 0000-0003-2666-414X
|b 14
700 1 _ |a Ricceri, Fulvio
|0 0000-0001-8749-9737
|b 15
700 1 _ |a Lasheras, Cristina
|0 0000-0003-0482-4229
|b 16
700 1 _ |a Crous-Bou, Marta
|b 17
700 1 _ |a Sánchez, Maria-Jose
|0 0000-0003-4817-0757
|b 18
700 1 _ |a Aizpurua-Atxega, Amaia
|b 19
700 1 _ |a Guevara, Marcela
|0 0000-0001-9242-6364
|b 20
700 1 _ |a Tsilidis, Kostas K
|0 0000-0002-8452-8472
|b 21
700 1 _ |a Chatziioannou, Anastasia Chrysovalantou
|0 0000-0002-1973-7542
|b 22
700 1 _ |a Weiderpass, Elisabete
|0 0000-0003-2237-0128
|b 23
700 1 _ |a Travis, Ruth C
|b 24
700 1 _ |a Wishart, David S
|0 0000-0002-3207-2434
|b 25
700 1 _ |a Andrés-Lacueva, Cristina
|0 0000-0002-8494-4978
|b 26
700 1 _ |a Zamora-Ros, Raul
|0 0000-0002-6236-6804
|b 27
773 _ _ |a 10.3390/cancers16234116
|g Vol. 16, no. 23, p. 4116 -
|0 PERI:(DE-600)2527080-1
|n 23
|p 4116
|t Cancers
|v 16
|y 2024
|x 2072-6694
909 C O |o oai:inrepo02.dkfz.de:295915
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCERS : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-07-31T16:07:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-07-31T16:07:06Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-07-31T16:07:06Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2023-07-31T16:07:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCERS : 2022
|d 2023-10-26
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21