000295924 001__ 295924
000295924 005__ 20250102142738.0
000295924 0247_ $$2doi$$a10.1002/bimj.70028
000295924 0247_ $$2pmid$$apmid:39692541
000295924 0247_ $$2ISSN$$a0323-3847
000295924 0247_ $$2ISSN$$a0006-3452
000295924 0247_ $$2ISSN$$a1521-4036
000295924 037__ $$aDKFZ-2024-02737
000295924 041__ $$aEnglish
000295924 082__ $$a570
000295924 1001_ $$0P:(DE-He78)92820b4867c955a04f642707ecf35b40$$aEdelmann, Dominic$$b0$$eFirst author$$udkfz
000295924 245__ $$aThe Progression-Free-Survival Ratio in Molecularly Aided Tumor Trials: A Critical Examination of Current Practice and Suggestions for Alternative Methods.
000295924 260__ $$aBerlin$$bWiley-VCH$$c2025
000295924 3367_ $$2DRIVER$$aarticle
000295924 3367_ $$2DataCite$$aOutput Types/Journal article
000295924 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734614317_17560
000295924 3367_ $$2BibTeX$$aARTICLE
000295924 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000295924 3367_ $$00$$2EndNote$$aJournal Article
000295924 500__ $$a#EA:C060#LA:C060#
000295924 520__ $$aThe progression-free-survival ratio is a popular endpoint in oncology trials, which is frequently applied to evaluate the efficacy of molecularly targeted treatments in late-stage patients. Using elementary calculations and simulations, numerous shortcomings of the current methodology are pointed out. As a remedy to these shortcomings, an alternative methodology is proposed, using a marginal Cox model or a marginal accelerated failure time model for clustered time-to-event data. Using comprehensive simulations, it is shown that this methodology outperforms existing methods in settings where the intrapatient correlation is low to moderate. The performance of the model is further demonstrated in a real data example from a molecularly aided tumor trial. Sample size considerations are discussed.
000295924 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000295924 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000295924 650_7 $$2Other$$aWeibull distribution
000295924 650_7 $$2Other$$aaccelerated failure time model
000295924 650_7 $$2Other$$agrowth modulation index
000295924 650_7 $$2Other$$amarginal model
000295924 650_7 $$2Other$$apaired time‐to‐event data
000295924 650_7 $$2Other$$aprogression‐free‐survival ratio
000295924 650_2 $$2MeSH$$aHumans
000295924 650_2 $$2MeSH$$aBiometry: methods
000295924 650_2 $$2MeSH$$aNeoplasms: mortality
000295924 650_2 $$2MeSH$$aClinical Trials as Topic: methods
000295924 650_2 $$2MeSH$$aProgression-Free Survival
000295924 650_2 $$2MeSH$$aMolecular Targeted Therapy: methods
000295924 650_2 $$2MeSH$$aModels, Statistical
000295924 650_2 $$2MeSH$$aProportional Hazards Models
000295924 7001_ $$0P:(DE-He78)9c4af0f5ceb3a2072b3736274eadf20e$$aTerzer, Tobias$$b1
000295924 7001_ $$0P:(DE-He78)5ea1944c122bc098a81df27a05572719$$aHorak, Peter$$b2$$udkfz
000295924 7001_ $$aSchlenk, Richard$$b3
000295924 7001_ $$0P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aBenner, Axel$$b4$$eLast author$$udkfz
000295924 773__ $$0PERI:(DE-600)1479920-0$$a10.1002/bimj.70028$$gVol. 67, no. 1, p. e70028$$n1$$pe70028$$tBiometrical journal$$v67$$x0323-3847$$y2025
000295924 909CO $$ooai:inrepo02.dkfz.de:295924$$pVDB
000295924 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)92820b4867c955a04f642707ecf35b40$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000295924 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9c4af0f5ceb3a2072b3736274eadf20e$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000295924 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5ea1944c122bc098a81df27a05572719$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000295924 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000295924 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000295924 9141_ $$y2025
000295924 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000295924 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-21$$wger
000295924 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000295924 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000295924 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000295924 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000295924 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000295924 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000295924 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
000295924 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000295924 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMETRICAL J : 2022$$d2023-10-21
000295924 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000295924 9202_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000295924 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000295924 9201_ $$0I:(DE-He78)B340-20160331$$kB340$$lTranslationale Medizinische Onkologie$$x1
000295924 9200_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000295924 980__ $$ajournal
000295924 980__ $$aVDB
000295924 980__ $$aI:(DE-He78)C060-20160331
000295924 980__ $$aI:(DE-He78)B340-20160331
000295924 980__ $$aUNRESTRICTED