001     295924
005     20250102142738.0
024 7 _ |a 10.1002/bimj.70028
|2 doi
024 7 _ |a pmid:39692541
|2 pmid
024 7 _ |a 0323-3847
|2 ISSN
024 7 _ |a 0006-3452
|2 ISSN
024 7 _ |a 1521-4036
|2 ISSN
037 _ _ |a DKFZ-2024-02737
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Edelmann, Dominic
|0 P:(DE-He78)92820b4867c955a04f642707ecf35b40
|b 0
|e First author
|u dkfz
245 _ _ |a The Progression-Free-Survival Ratio in Molecularly Aided Tumor Trials: A Critical Examination of Current Practice and Suggestions for Alternative Methods.
260 _ _ |a Berlin
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734614317_17560
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C060#LA:C060#
520 _ _ |a The progression-free-survival ratio is a popular endpoint in oncology trials, which is frequently applied to evaluate the efficacy of molecularly targeted treatments in late-stage patients. Using elementary calculations and simulations, numerous shortcomings of the current methodology are pointed out. As a remedy to these shortcomings, an alternative methodology is proposed, using a marginal Cox model or a marginal accelerated failure time model for clustered time-to-event data. Using comprehensive simulations, it is shown that this methodology outperforms existing methods in settings where the intrapatient correlation is low to moderate. The performance of the model is further demonstrated in a real data example from a molecularly aided tumor trial. Sample size considerations are discussed.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Weibull distribution
|2 Other
650 _ 7 |a accelerated failure time model
|2 Other
650 _ 7 |a growth modulation index
|2 Other
650 _ 7 |a marginal model
|2 Other
650 _ 7 |a paired time‐to‐event data
|2 Other
650 _ 7 |a progression‐free‐survival ratio
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Biometry: methods
|2 MeSH
650 _ 2 |a Neoplasms: mortality
|2 MeSH
650 _ 2 |a Clinical Trials as Topic: methods
|2 MeSH
650 _ 2 |a Progression-Free Survival
|2 MeSH
650 _ 2 |a Molecular Targeted Therapy: methods
|2 MeSH
650 _ 2 |a Models, Statistical
|2 MeSH
650 _ 2 |a Proportional Hazards Models
|2 MeSH
700 1 _ |a Terzer, Tobias
|0 P:(DE-He78)9c4af0f5ceb3a2072b3736274eadf20e
|b 1
700 1 _ |a Horak, Peter
|0 P:(DE-He78)5ea1944c122bc098a81df27a05572719
|b 2
|u dkfz
700 1 _ |a Schlenk, Richard
|b 3
700 1 _ |a Benner, Axel
|0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.1002/bimj.70028
|g Vol. 67, no. 1, p. e70028
|0 PERI:(DE-600)1479920-0
|n 1
|p e70028
|t Biometrical journal
|v 67
|y 2025
|x 0323-3847
909 C O |o oai:inrepo02.dkfz.de:295924
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)92820b4867c955a04f642707ecf35b40
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)9c4af0f5ceb3a2072b3736274eadf20e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)5ea1944c122bc098a81df27a05572719
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOMETRICAL J : 2022
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 2 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)B340-20160331
|k B340
|l Translationale Medizinische Onkologie
|x 1
920 0 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)B340-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21