001     296066
005     20250103121047.0
024 7 _ |a 10.3390/jimaging10120316
|2 doi
024 7 _ |a pmid:39728213
|2 pmid
024 7 _ |a pmc:PMC11679912
|2 pmc
037 _ _ |a DKFZ-2025-00014
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Zaffino, Paolo
|b 0
245 _ _ |a Toward Closing the Loop in Image-to-Image Conversion in Radiotherapy: A Quality Control Tool to Predict Synthetic Computed Tomography Hounsfield Unit Accuracy.
260 _ _ |a Basel
|c 2024
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1735821495_26397
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In recent years, synthetic Computed Tomography (CT) images generated from Magnetic Resonance (MR) or Cone Beam Computed Tomography (CBCT) acquisitions have been shown to be comparable to real CT images in terms of dose computation for radiotherapy simulation. However, until now, there has been no independent strategy to assess the quality of each synthetic image in the absence of ground truth. In this work, we propose a Deep Learning (DL)-based framework to predict the accuracy of synthetic CT in terms of Mean Absolute Error (MAE) without the need for a ground truth (GT). The proposed algorithm generates a volumetric map as an output, informing clinicians of the predicted MAE slice-by-slice. A cascading multi-model architecture was used to deal with the complexity of the MAE prediction task. The workflow was trained and tested on two cohorts of head and neck cancer patients with different imaging modalities: 27 MR scans and 33 CBCT. The algorithm evaluation revealed an accurate HU prediction (a median absolute prediction deviation equal to 4 HU for CBCT-based synthetic CTs and 6 HU for MR-based synthetic CTs), with discrepancies that do not affect the clinical decisions made on the basis of the proposed estimation. The workflow exhibited no systematic error in MAE prediction. This work represents a proof of concept about the feasibility of synthetic CT evaluation in daily clinical practice, and it paves the way for future patient-specific quality assessment strategies.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a MR-only adaptive radiotherapy
|2 Other
650 _ 7 |a conversion prediction
|2 Other
650 _ 7 |a deep learning
|2 Other
650 _ 7 |a synthetic CT
|2 Other
700 1 _ |a Raggio, Ciro Benito
|0 0009-0008-2443-4029
|b 1
700 1 _ |a Thummerer, Adrian
|0 0000-0002-1874-5030
|b 2
700 1 _ |a Marmitt, Gabriel Guterres
|0 0000-0002-8486-7001
|b 3
700 1 _ |a Langendijk, Johannes Albertus
|0 0000-0003-1083-372X
|b 4
700 1 _ |a Procopio, Anna
|0 0000-0002-3639-8714
|b 5
700 1 _ |a Cosentino, Carlo
|0 0000-0001-5768-1829
|b 6
700 1 _ |a Seco, Joao
|0 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
|b 7
|u dkfz
700 1 _ |a Knopf, Antje Christin
|0 0000-0001-8212-571X
|b 8
700 1 _ |a Both, Stefan
|b 9
700 1 _ |a Spadea, Maria Francesca
|0 0000-0002-5339-9583
|b 10
773 _ _ |a 10.3390/jimaging10120316
|g Vol. 10, no. 12, p. 316 -
|0 PERI:(DE-600)2824270-1
|n 12
|p 316
|t Journal of imaging
|v 10
|y 2024
|x 2313-433X
909 C O |o oai:inrepo02.dkfz.de:296066
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J IMAGING : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:59:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:59:23Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:59:23Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2023-04-12T14:59:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-23
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-23
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-23
920 1 _ |0 I:(DE-He78)E041-20160331
|k E041
|l Med. Physik in der Radioonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E041-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21