001     296069
005     20250214112551.0
024 7 _ |a 10.1016/j.trecan.2024.11.009
|2 doi
024 7 _ |a pmid:39732595
|2 pmid
024 7 _ |a 2405-8033
|2 ISSN
024 7 _ |a 2405-8025
|2 ISSN
024 7 _ |a altmetric:172509914
|2 altmetric
037 _ _ |a DKFZ-2025-00017
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Isermann, Tamara
|0 P:(DE-He78)4fa7e3d6860d7d25296138a72c3ef7bc
|b 0
|u dkfz
245 _ _ |a KRAS inhibitors: resistance drivers and combinatorial strategies.
260 _ _ |a Amsterdam
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1739528676_2240
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2025 Feb;11(2):91-116
520 _ _ |a In 1982, the RAS genes HRAS and KRAS were discovered as the first human cancer genes, with KRAS later identified as one of the most frequently mutated oncogenes. Yet, it took nearly 40 years to develop clinically effective inhibitors for RAS-mutant cancers. The discovery in 2013 by Shokat and colleagues of a druggable pocket in KRAS paved the way to FDA approval of the first covalently binding KRASG12C inhibitors, sotorasib and adagrasib, in 2021 and 2022, respectively. However, rather than marking the end of a successful assault on the Mount Everest of cancer research, this landmark only revealed new challenges in RAS drug discovery. In this review, we highlight the progress on defining resistance mechanisms and developing combination treatment strategies to improve patient responses to KRAS therapies.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a KRAS
|2 Other
650 _ 7 |a colorectal carcinoma
|2 Other
650 _ 7 |a drug resistance
|2 Other
650 _ 7 |a non-small cell lung cancer
|2 Other
650 _ 7 |a pancreatic ductal adenocarcinoma
|2 Other
700 1 _ |a Sers, Christine
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Der, Channing J
|b 2
700 1 _ |a Papke, Bjoern
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1016/j.trecan.2024.11.009
|g p. S2405803324002759
|0 PERI:(DE-600)2852626-0
|n 2
|p 91-116
|t Trends in cancer
|v 11
|y 2025
|x 2405-8033
909 C O |p VDB
|o oai:inrepo02.dkfz.de:296069
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)4fa7e3d6860d7d25296138a72c3ef7bc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRENDS CANCER : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-25
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b TRENDS CANCER : 2022
|d 2023-08-25
920 1 _ |0 I:(DE-He78)BE01-20160331
|k BE01
|l DKTK Koordinierungsstelle Berlin
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)BE01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21