000296083 001__ 296083
000296083 005__ 20250210113342.0
000296083 0247_ $$2doi$$a10.1038/s12276-024-01377-x
000296083 0247_ $$2pmid$$apmid:39741187
000296083 0247_ $$2ISSN$$a1226-3613
000296083 0247_ $$2ISSN$$a2092-6413
000296083 037__ $$aDKFZ-2025-00031
000296083 041__ $$aEnglish
000296083 082__ $$a540
000296083 1001_ $$0P:(DE-He78)dd12076e6503be19c4f73ec9bb7793fa$$aXu, Jinyun$$b0$$eFirst author$$udkfz
000296083 245__ $$aLoss of YTHDC1 m6A reading function promotes invasiveness in urothelial carcinoma of the bladder.
000296083 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2025
000296083 3367_ $$2DRIVER$$aarticle
000296083 3367_ $$2DataCite$$aOutput Types/Journal article
000296083 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1739183578_13025
000296083 3367_ $$2BibTeX$$aARTICLE
000296083 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000296083 3367_ $$00$$2EndNote$$aJournal Article
000296083 500__ $$aDKFZ-ZMBH Alliance / #EA:A130#LA:A130# / 2025 Feb;57(1):118-130
000296083 520__ $$aBladder cancer poses significant clinical challenges due to its high metastatic potential and poor prognosis, especially when it progresses to muscle-invasive stages. Here, we show that the m6A reader YTHDC1 is downregulated in muscle-invasive bladder cancer and is negatively correlated with the expression of epithelial‒mesenchymal transition genes. The functional inhibition or depletion of YTHDC1 increased the migration and invasion of urothelial cells. Integrative analysis of multimodal sequencing datasets provided detailed insights into the molecular mechanisms mediating YTHDC1-dependent phenotypes and identified SMAD6 as a key transcript involved in the invasiveness of urothelial carcinoma of the bladder. Notably, SMAD6 mRNA colocalized less with YTHDC1 in tumoral tissues than in paratumoral tissues, indicating disrupted binding during cancer progression. Our findings establish YTHDC1-dependent m6A reading as a critical epitranscriptomic mechanism regulating bladder cancer invasiveness and provide a paradigm for the epitranscriptomic deregulation of cancer-associated networks.
000296083 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000296083 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000296083 7001_ $$0P:(DE-He78)af92a3d6ca10d83df68e60e15ed7e1ea$$aKoch, Jonas$$b1$$udkfz
000296083 7001_ $$0P:(DE-He78)2a599a43bd0b5910c80edb288d8da3e5$$aSchmidt, Claudia$$b2$$udkfz
000296083 7001_ $$aNientiedt, Malin$$b3
000296083 7001_ $$aNeuberger, Manuel$$b4
000296083 7001_ $$aErben, Philipp$$b5
000296083 7001_ $$aMichel, Maurice Stephan$$b6
000296083 7001_ $$00000-0001-5471-4277$$aRodríguez-Paredes, Manuel$$b7
000296083 7001_ $$0P:(DE-He78)a8d53a8cdc716390a6cbacdead227143$$aLyko, Frank$$b8$$eLast author$$udkfz
000296083 773__ $$0PERI:(DE-600)2084833-X$$a10.1038/s12276-024-01377-x$$n1$$p118-130$$tExperimental & molecular medicine$$v57$$x1226-3613$$y2025
000296083 909CO $$ooai:inrepo02.dkfz.de:296083$$pVDB
000296083 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)dd12076e6503be19c4f73ec9bb7793fa$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000296083 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)af92a3d6ca10d83df68e60e15ed7e1ea$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000296083 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2a599a43bd0b5910c80edb288d8da3e5$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000296083 9101_ $$0I:(DE-588b)2036810-0$$60000-0001-5471-4277$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000296083 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a8d53a8cdc716390a6cbacdead227143$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000296083 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000296083 9141_ $$y2025
000296083 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEXP MOL MED : 2022$$d2023-10-24
000296083 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
000296083 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
000296083 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24
000296083 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:05:13Z
000296083 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:05:13Z
000296083 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:05:13Z
000296083 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2023-05-02T09:05:13Z
000296083 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
000296083 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-24
000296083 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
000296083 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
000296083 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-24
000296083 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
000296083 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bEXP MOL MED : 2022$$d2023-10-24
000296083 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-24
000296083 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-24
000296083 9202_ $$0I:(DE-He78)A130-20160331$$kA130$$lA130 Epigenetik$$x0
000296083 9201_ $$0I:(DE-He78)A130-20160331$$kA130$$lA130 Epigenetik$$x0
000296083 9201_ $$0I:(DE-He78)W210-20160331$$kW210$$lLichtmikroskopie$$x1
000296083 9200_ $$0I:(DE-He78)A130-20160331$$kA130$$lA130 Epigenetik$$x0
000296083 980__ $$ajournal
000296083 980__ $$aVDB
000296083 980__ $$aI:(DE-He78)A130-20160331
000296083 980__ $$aI:(DE-He78)W210-20160331
000296083 980__ $$aUNRESTRICTED