Home > Publications database > Improving 10-year cardiovascular risk prediction in patients with type 2 diabetes with metabolomics. > print |
001 | 296215 | ||
005 | 20250114163304.0 | ||
024 | 7 | _ | |a 10.1186/s12933-025-02581-3 |2 doi |
024 | 7 | _ | |a pmid:39806417 |2 pmid |
037 | _ | _ | |a DKFZ-2025-00128 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Xie, Ruijie |0 P:(DE-He78)7089188e1b7bdb788ba48ba96f21df07 |b 0 |e First author |u dkfz |
245 | _ | _ | |a Improving 10-year cardiovascular risk prediction in patients with type 2 diabetes with metabolomics. |
260 | _ | _ | |a London |c 2025 |b BioMed Central |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1736865742_12089 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:C070#LA:C070# |
520 | _ | _ | |a Existing cardiovascular risk prediction models still have room for improvement in patients with type 2 diabetes who represent a high-risk population. This study evaluated whether adding metabolomic biomarkers could enhance the 10-year prediction of major adverse cardiovascular events (MACE) in these patients.Data from 10,257 to 1,039 patients with type 2 diabetes from the UK Biobank (UKB) and the German ESTHER cohort, respectively, were used for model derivation, internal and external validation. A total of 249 metabolites were measured with nuclear magnetic resonance (NMR) spectroscopy. Sex-specific LASSO regression with bootstrapping identified significant metabolites. The enhanced model's predictive performance was evaluated using Harrell's C-index.Seven metabolomic biomarkers were selected by LASSO regression for enhanced MACE risk prediction (three for both sexes, three male- and one female-specific metabolite(s)). Especially albumin and the omega-3-fatty-acids-to-total-fatty-acids-percentage among males and lactate among females improved the C-index. In internal validation with 30% of the UKB, adding the selected metabolites to the SCORE2-Diabetes model increased the C-index statistically significantly (P = 0.037) from 0.660 to 0.678 in the total sample. In external validation with ESTHER, the C-index increase was higher (+ 0.043) and remained statistically significant (P = 0.011).Incorporating seven metabolomic biomarkers in the SCORE2-Diabetes model enhanced its ability to predict MACE in patients with type 2 diabetes. Given the latest cost reduction and standardization efforts, NMR metabolomics has the potential for translation into the clinical routine. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a Cardiovascular risk |2 Other |
650 | _ | 7 | |a Metabolomics |2 Other |
650 | _ | 7 | |a Prediction model |2 Other |
650 | _ | 7 | |a Type 2 diabetes |2 Other |
650 | _ | 7 | |a Biomarkers |2 NLM Chemicals |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Diabetes Mellitus, Type 2: diagnosis |2 MeSH |
650 | _ | 2 | |a Diabetes Mellitus, Type 2: epidemiology |2 MeSH |
650 | _ | 2 | |a Diabetes Mellitus, Type 2: blood |2 MeSH |
650 | _ | 2 | |a Male |2 MeSH |
650 | _ | 2 | |a Female |2 MeSH |
650 | _ | 2 | |a Metabolomics |2 MeSH |
650 | _ | 2 | |a Middle Aged |2 MeSH |
650 | _ | 2 | |a Cardiovascular Diseases: epidemiology |2 MeSH |
650 | _ | 2 | |a Cardiovascular Diseases: diagnosis |2 MeSH |
650 | _ | 2 | |a Risk Assessment |2 MeSH |
650 | _ | 2 | |a Aged |2 MeSH |
650 | _ | 2 | |a Predictive Value of Tests |2 MeSH |
650 | _ | 2 | |a Biomarkers: blood |2 MeSH |
650 | _ | 2 | |a Time Factors |2 MeSH |
650 | _ | 2 | |a Heart Disease Risk Factors |2 MeSH |
650 | _ | 2 | |a Magnetic Resonance Spectroscopy |2 MeSH |
650 | _ | 2 | |a Prognosis |2 MeSH |
650 | _ | 2 | |a Reproducibility of Results |2 MeSH |
650 | _ | 2 | |a Germany: epidemiology |2 MeSH |
650 | _ | 2 | |a Decision Support Techniques |2 MeSH |
650 | _ | 2 | |a Adult |2 MeSH |
650 | _ | 2 | |a Sex Factors |2 MeSH |
700 | 1 | _ | |a Seum, Teresa |0 P:(DE-He78)cfc349d742aee6cc3394ccaa1ef6494f |b 1 |u dkfz |
700 | 1 | _ | |a Sha, Sha |0 P:(DE-He78)1d6f6305a65e2f7de2c7fbffbae83780 |b 2 |u dkfz |
700 | 1 | _ | |a Trares, Kira |0 P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea |b 3 |u dkfz |
700 | 1 | _ | |a Holleczek, Bernd |b 4 |
700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 5 |u dkfz |
700 | 1 | _ | |a Schöttker, Ben |0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46 |b 6 |e Last author |u dkfz |
773 | _ | _ | |a 10.1186/s12933-025-02581-3 |g Vol. 24, no. 1, p. 18 |0 PERI:(DE-600)2093769-6 |n 1 |p 18 |t Cardiovascular diabetology |v 24 |y 2025 |x 1475-2840 |
909 | C | O | |o oai:inrepo02.dkfz.de:296215 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)7089188e1b7bdb788ba48ba96f21df07 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)cfc349d742aee6cc3394ccaa1ef6494f |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)1d6f6305a65e2f7de2c7fbffbae83780 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CARDIOVASC DIABETOL : 2022 |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T15:07:21Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T15:07:21Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T15:07:21Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-24 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-10-24 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CARDIOVASC DIABETOL : 2022 |d 2023-10-24 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-24 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-24 |
920 | 2 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
920 | 0 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|