001     296215
005     20250114163304.0
024 7 _ |a 10.1186/s12933-025-02581-3
|2 doi
024 7 _ |a pmid:39806417
|2 pmid
037 _ _ |a DKFZ-2025-00128
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Xie, Ruijie
|0 P:(DE-He78)7089188e1b7bdb788ba48ba96f21df07
|b 0
|e First author
|u dkfz
245 _ _ |a Improving 10-year cardiovascular risk prediction in patients with type 2 diabetes with metabolomics.
260 _ _ |a London
|c 2025
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736865742_12089
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070#LA:C070#
520 _ _ |a Existing cardiovascular risk prediction models still have room for improvement in patients with type 2 diabetes who represent a high-risk population. This study evaluated whether adding metabolomic biomarkers could enhance the 10-year prediction of major adverse cardiovascular events (MACE) in these patients.Data from 10,257 to 1,039 patients with type 2 diabetes from the UK Biobank (UKB) and the German ESTHER cohort, respectively, were used for model derivation, internal and external validation. A total of 249 metabolites were measured with nuclear magnetic resonance (NMR) spectroscopy. Sex-specific LASSO regression with bootstrapping identified significant metabolites. The enhanced model's predictive performance was evaluated using Harrell's C-index.Seven metabolomic biomarkers were selected by LASSO regression for enhanced MACE risk prediction (three for both sexes, three male- and one female-specific metabolite(s)). Especially albumin and the omega-3-fatty-acids-to-total-fatty-acids-percentage among males and lactate among females improved the C-index. In internal validation with 30% of the UKB, adding the selected metabolites to the SCORE2-Diabetes model increased the C-index statistically significantly (P = 0.037) from 0.660 to 0.678 in the total sample. In external validation with ESTHER, the C-index increase was higher (+ 0.043) and remained statistically significant (P = 0.011).Incorporating seven metabolomic biomarkers in the SCORE2-Diabetes model enhanced its ability to predict MACE in patients with type 2 diabetes. Given the latest cost reduction and standardization efforts, NMR metabolomics has the potential for translation into the clinical routine.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Cardiovascular risk
|2 Other
650 _ 7 |a Metabolomics
|2 Other
650 _ 7 |a Prediction model
|2 Other
650 _ 7 |a Type 2 diabetes
|2 Other
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Diabetes Mellitus, Type 2: diagnosis
|2 MeSH
650 _ 2 |a Diabetes Mellitus, Type 2: epidemiology
|2 MeSH
650 _ 2 |a Diabetes Mellitus, Type 2: blood
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Metabolomics
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Cardiovascular Diseases: epidemiology
|2 MeSH
650 _ 2 |a Cardiovascular Diseases: diagnosis
|2 MeSH
650 _ 2 |a Risk Assessment
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Predictive Value of Tests
|2 MeSH
650 _ 2 |a Biomarkers: blood
|2 MeSH
650 _ 2 |a Time Factors
|2 MeSH
650 _ 2 |a Heart Disease Risk Factors
|2 MeSH
650 _ 2 |a Magnetic Resonance Spectroscopy
|2 MeSH
650 _ 2 |a Prognosis
|2 MeSH
650 _ 2 |a Reproducibility of Results
|2 MeSH
650 _ 2 |a Germany: epidemiology
|2 MeSH
650 _ 2 |a Decision Support Techniques
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Sex Factors
|2 MeSH
700 1 _ |a Seum, Teresa
|0 P:(DE-He78)cfc349d742aee6cc3394ccaa1ef6494f
|b 1
|u dkfz
700 1 _ |a Sha, Sha
|0 P:(DE-He78)1d6f6305a65e2f7de2c7fbffbae83780
|b 2
|u dkfz
700 1 _ |a Trares, Kira
|0 P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea
|b 3
|u dkfz
700 1 _ |a Holleczek, Bernd
|b 4
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 5
|u dkfz
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 6
|e Last author
|u dkfz
773 _ _ |a 10.1186/s12933-025-02581-3
|g Vol. 24, no. 1, p. 18
|0 PERI:(DE-600)2093769-6
|n 1
|p 18
|t Cardiovascular diabetology
|v 24
|y 2025
|x 1475-2840
909 C O |o oai:inrepo02.dkfz.de:296215
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)7089188e1b7bdb788ba48ba96f21df07
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)cfc349d742aee6cc3394ccaa1ef6494f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)1d6f6305a65e2f7de2c7fbffbae83780
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CARDIOVASC DIABETOL : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:07:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:07:21Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:07:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CARDIOVASC DIABETOL : 2022
|d 2023-10-24
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-24
920 2 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 0 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21