001     296216
005     20250210124733.0
024 7 _ |a 10.1016/j.arr.2025.102661
|2 doi
024 7 _ |a pmid:39805472
|2 pmid
024 7 _ |a 1568-1637
|2 ISSN
024 7 _ |a 1872-9649
|2 ISSN
024 7 _ |a altmetric:172958528
|2 altmetric
037 _ _ |a DKFZ-2025-00129
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Degen, Miriam
|0 P:(DE-He78)32395dd61ce265f1f29942fadf07e669
|b 0
|e First author
|u dkfz
245 _ _ |a Medication reviews in hospitalised patients for reduced hospital readmission and mortality. Systematic review, meta-analysis and meta-regression of RCTs.
260 _ _ |a Oxford [u.a.]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1739188012_28365
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070#LA:C070# / 2025 Feb;104:102661
520 _ _ |a Efforts to reduce preventable medication-related harm through medication reviews have increased, but interventions often yield null-results regarding clinical outcomes. We conducted a systematic literature search in four data bases and summarised the available evidence from randomised controlled trials (RCTs) comparing medication reviews and usual care in hospitalised patients regarding hospital readmissions and all-cause mortality by random-effects meta-analyses. Effect size differences by methodological study differences were of special interest. The meta-analysis of all 24 trials on hospital readmissions, including 12,539 participants, showed a statistically significant 8% decrease in hospital readmissions (risk ratio (RR) [95% confidence interval]: (0.92 [0.88-0.97], p=0.002). The number of patient contacts was the most prominent effect modifier in meta-regression (p=0.003) and the effect of medication reviews was approximately twice as strong (15%) in 11 trials with 2 or more patient contacts (0.85 [0.78-0.92], p<0.001). No statistically significant reduction in all-cause mortality was observed in a meta-analysis of all 22 trials with data for this outcome (0.95 [0.86-1.04], p=0.24), including 12,350 participants. The method of mortality assessment was identified as an effect modifier by meta-regression (p=0.01). A meta-analysis of 10 trials with complete mortality ascertainment via registries or primary care data showed a significantly 19% reduced mortality (0.81 [0.70-0.94], p<0.01)). In conclusion, medication reviews reduce the risk of hospital readmission and might also reduce all-cause mortality. Comprehensive mortality assessment was essential for successful trials. Clinical guidelines should recommend medication reviews with multiple patient contacts, involving pharmacists, either for repeated medication reviews or to improve adherence.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Hospitalizations
|2 Other
650 _ 7 |a Medication Review
|2 Other
650 _ 7 |a Mortality
|2 Other
650 _ 7 |a Polypharmacy
|2 Other
650 _ 7 |a Randomized Controlled Trial
|2 Other
650 _ 7 |a Systematic Review
|2 Other
700 1 _ |a Chen, Li-Ju
|0 P:(DE-He78)ad44271ecf6b1eec3e0d0089c66dfdbe
|b 1
|u dkfz
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 2
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.arr.2025.102661
|g p. 102661 -
|0 PERI:(DE-600)2099320-1
|p 102661
|t Ageing research reviews
|v 104
|y 2025
|x 1568-1637
909 C O |p VDB
|o oai:inrepo02.dkfz.de:296216
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)32395dd61ce265f1f29942fadf07e669
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)ad44271ecf6b1eec3e0d0089c66dfdbe
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-24
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AGEING RES REV : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1120
|2 StatID
|b BIOSIS Reviews Reports And Meetings
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b AGEING RES REV : 2022
|d 2023-08-24
920 2 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 0 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21