000297977 001__ 297977
000297977 005__ 20250120163340.0
000297977 0247_ $$2doi$$a10.1002/hem3.70060
000297977 0247_ $$2pmid$$apmid:39816531
000297977 0247_ $$2pmc$$apmc:PMC11733593
000297977 037__ $$aDKFZ-2025-00152
000297977 041__ $$aEnglish
000297977 082__ $$a610
000297977 1001_ $$aCocciardi, Sibylle$$b0
000297977 245__ $$aImpact of myelodysplasia-related and additional gene mutations in intensively treated patients with NPM1-mutated AML.
000297977 260__ $$aHoboken$$bJohn Wiley & Sons Ltd.$$c2025
000297977 3367_ $$2DRIVER$$aarticle
000297977 3367_ $$2DataCite$$aOutput Types/Journal article
000297977 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737374101_18536
000297977 3367_ $$2BibTeX$$aARTICLE
000297977 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000297977 3367_ $$00$$2EndNote$$aJournal Article
000297977 520__ $$aThis study aimed to evaluate the impact of the myelodysplasia-related gene (MRG) as well as additional gene mutations on outcomes in intensively treated patients with NPM1-mutated (NPM1 mut) AML. Targeted DNA sequencing of 263 genes was performed in 568 NPM1 mut AML patients (median age: 59 years) entered into the prospective AMLSG 09-09 treatment trial. Most commonly co-mutated genes were DNMT3A (49.8%), FLT3-TKD (25.9%), PTPN11 (24.8%), NRAS (22.7%), TET2 (21.7%), IDH2 (21.3%), IDH1 (18%), and FLT3-ITD (17.3%). MRG mutations were identified in 18.1% of cases (18-60 years: 9.8%; >60 years: 28.7%). When focusing on the 470 patients with 2022 ELN favorable-risk NPM1 mut AML, multivariable analysis for event-free survival (EFS) identified age (p < 0.001), DNMT3A R882 (p < 0.001), IDH1 (p = 0.007), and MRG mutations (p = 0.03) as unfavorable factors, cohesin gene co-mutations (p = 0.001) and treatment with gemtuzumab ozogamicin (p = 0.007) as favorable factors. Restricting the analysis to a subset of CR/CRi patients with available data on NPM1 mut measurable residual disease (MRD) status in blood post cycle 2 in the model, MRG mutations lost their significant effect, whereas DNMT3A R882, MYC, and cohesin gene mutations retained the adverse and favorable effects. For OS, age (p < 0.001), DNMT3A R882 (p = 0.042), IDH1 (p = 0.045), and KRAS (0.003) mutations were unfavorable factors, sole favorable factor was IDH2 co-mutation (p = 0.037). In 2022 ELN favorable-risk NPM1 mut AML, MRG mutations are associated with inferior EFS; however, this effect is no longer present when considering NPM1 mut MRD status post cycle 2; DNMT3A R882 and MYC mutations remained adverse, and cohesin gene mutations favorable prognostic factors independent of the NPM1 mut MRD status.
000297977 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000297977 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000297977 7001_ $$0P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74$$aSaadati, Maral$$b1$$udkfz
000297977 7001_ $$aWeiß, Nina$$b2
000297977 7001_ $$aSpäth, Daniela$$b3
000297977 7001_ $$aKapp-Schwoerer, Silke$$b4
000297977 7001_ $$aSchneider, Isabelle$$b5
000297977 7001_ $$aMeid, Annika$$b6
000297977 7001_ $$aGaidzik, Verena I$$b7
000297977 7001_ $$aSkambraks, Sabrina$$b8
000297977 7001_ $$aFiedler, Walter$$b9
000297977 7001_ $$aKühn, Michael W M$$b10
000297977 7001_ $$aGerming, Ulrich$$b11
000297977 7001_ $$aMayer, Karin T$$b12
000297977 7001_ $$aLübbert, Michael$$b13
000297977 7001_ $$aPapaemmanuil, Elli$$b14
000297977 7001_ $$aThol, Felicitas$$b15
000297977 7001_ $$aHeuser, Michael$$b16
000297977 7001_ $$aGanser, Arnold$$b17
000297977 7001_ $$aBullinger, Lars$$b18
000297977 7001_ $$0P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aBenner, Axel$$b19$$udkfz
000297977 7001_ $$aDöhner, Hartmut$$b20
000297977 7001_ $$00000-0002-2261-9862$$aDöhner, Konstanze$$b21
000297977 773__ $$0PERI:(DE-600)2922183-3$$a10.1002/hem3.70060$$gVol. 9, no. 1, p. e70060$$n1$$pe70060$$tHemaSphere$$v9$$x2572-9241$$y2025
000297977 909CO $$ooai:inrepo02.dkfz.de:297977$$pVDB
000297977 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000297977 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aDeutsches Krebsforschungszentrum$$b19$$kDKFZ
000297977 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000297977 9141_ $$y2025
000297977 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-18$$wger
000297977 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHEMASPHERE : 2022$$d2024-12-18
000297977 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000297977 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000297977 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-26T06:26:50Z
000297977 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-26T06:26:50Z
000297977 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double anonymous peer review$$d2024-08-26T06:26:50Z
000297977 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000297977 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
000297977 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-18
000297977 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
000297977 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000297977 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bHEMASPHERE : 2022$$d2024-12-18
000297977 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-18
000297977 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-18
000297977 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000297977 980__ $$ajournal
000297977 980__ $$aVDB
000297977 980__ $$aI:(DE-He78)C060-20160331
000297977 980__ $$aUNRESTRICTED