Home > Publications database > Impact of myelodysplasia-related and additional gene mutations in intensively treated patients with NPM1-mutated AML. > print |
001 | 297977 | ||
005 | 20250120163340.0 | ||
024 | 7 | _ | |a 10.1002/hem3.70060 |2 doi |
024 | 7 | _ | |a pmid:39816531 |2 pmid |
024 | 7 | _ | |a pmc:PMC11733593 |2 pmc |
037 | _ | _ | |a DKFZ-2025-00152 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Cocciardi, Sibylle |b 0 |
245 | _ | _ | |a Impact of myelodysplasia-related and additional gene mutations in intensively treated patients with NPM1-mutated AML. |
260 | _ | _ | |a Hoboken |c 2025 |b John Wiley & Sons Ltd. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1737374101_18536 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a This study aimed to evaluate the impact of the myelodysplasia-related gene (MRG) as well as additional gene mutations on outcomes in intensively treated patients with NPM1-mutated (NPM1 mut) AML. Targeted DNA sequencing of 263 genes was performed in 568 NPM1 mut AML patients (median age: 59 years) entered into the prospective AMLSG 09-09 treatment trial. Most commonly co-mutated genes were DNMT3A (49.8%), FLT3-TKD (25.9%), PTPN11 (24.8%), NRAS (22.7%), TET2 (21.7%), IDH2 (21.3%), IDH1 (18%), and FLT3-ITD (17.3%). MRG mutations were identified in 18.1% of cases (18-60 years: 9.8%; >60 years: 28.7%). When focusing on the 470 patients with 2022 ELN favorable-risk NPM1 mut AML, multivariable analysis for event-free survival (EFS) identified age (p < 0.001), DNMT3A R882 (p < 0.001), IDH1 (p = 0.007), and MRG mutations (p = 0.03) as unfavorable factors, cohesin gene co-mutations (p = 0.001) and treatment with gemtuzumab ozogamicin (p = 0.007) as favorable factors. Restricting the analysis to a subset of CR/CRi patients with available data on NPM1 mut measurable residual disease (MRD) status in blood post cycle 2 in the model, MRG mutations lost their significant effect, whereas DNMT3A R882, MYC, and cohesin gene mutations retained the adverse and favorable effects. For OS, age (p < 0.001), DNMT3A R882 (p = 0.042), IDH1 (p = 0.045), and KRAS (0.003) mutations were unfavorable factors, sole favorable factor was IDH2 co-mutation (p = 0.037). In 2022 ELN favorable-risk NPM1 mut AML, MRG mutations are associated with inferior EFS; however, this effect is no longer present when considering NPM1 mut MRD status post cycle 2; DNMT3A R882 and MYC mutations remained adverse, and cohesin gene mutations favorable prognostic factors independent of the NPM1 mut MRD status. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
700 | 1 | _ | |a Saadati, Maral |0 P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74 |b 1 |u dkfz |
700 | 1 | _ | |a Weiß, Nina |b 2 |
700 | 1 | _ | |a Späth, Daniela |b 3 |
700 | 1 | _ | |a Kapp-Schwoerer, Silke |b 4 |
700 | 1 | _ | |a Schneider, Isabelle |b 5 |
700 | 1 | _ | |a Meid, Annika |b 6 |
700 | 1 | _ | |a Gaidzik, Verena I |b 7 |
700 | 1 | _ | |a Skambraks, Sabrina |b 8 |
700 | 1 | _ | |a Fiedler, Walter |b 9 |
700 | 1 | _ | |a Kühn, Michael W M |b 10 |
700 | 1 | _ | |a Germing, Ulrich |b 11 |
700 | 1 | _ | |a Mayer, Karin T |b 12 |
700 | 1 | _ | |a Lübbert, Michael |b 13 |
700 | 1 | _ | |a Papaemmanuil, Elli |b 14 |
700 | 1 | _ | |a Thol, Felicitas |b 15 |
700 | 1 | _ | |a Heuser, Michael |b 16 |
700 | 1 | _ | |a Ganser, Arnold |b 17 |
700 | 1 | _ | |a Bullinger, Lars |b 18 |
700 | 1 | _ | |a Benner, Axel |0 P:(DE-He78)e15dfa1260625c69d6690a197392a994 |b 19 |u dkfz |
700 | 1 | _ | |a Döhner, Hartmut |b 20 |
700 | 1 | _ | |a Döhner, Konstanze |0 0000-0002-2261-9862 |b 21 |
773 | _ | _ | |a 10.1002/hem3.70060 |g Vol. 9, no. 1, p. e70060 |0 PERI:(DE-600)2922183-3 |n 1 |p e70060 |t HemaSphere |v 9 |y 2025 |x 2572-9241 |
909 | C | O | |o oai:inrepo02.dkfz.de:297977 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 19 |6 P:(DE-He78)e15dfa1260625c69d6690a197392a994 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-18 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b HEMASPHERE : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-08-26T06:26:50Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-08-26T06:26:50Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Double anonymous peer review |d 2024-08-26T06:26:50Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2024-12-18 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b HEMASPHERE : 2022 |d 2024-12-18 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-18 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-18 |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l C060 Biostatistik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|