001     297977
005     20250120163340.0
024 7 _ |a 10.1002/hem3.70060
|2 doi
024 7 _ |a pmid:39816531
|2 pmid
024 7 _ |a pmc:PMC11733593
|2 pmc
037 _ _ |a DKFZ-2025-00152
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Cocciardi, Sibylle
|b 0
245 _ _ |a Impact of myelodysplasia-related and additional gene mutations in intensively treated patients with NPM1-mutated AML.
260 _ _ |a Hoboken
|c 2025
|b John Wiley & Sons Ltd.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737374101_18536
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study aimed to evaluate the impact of the myelodysplasia-related gene (MRG) as well as additional gene mutations on outcomes in intensively treated patients with NPM1-mutated (NPM1 mut) AML. Targeted DNA sequencing of 263 genes was performed in 568 NPM1 mut AML patients (median age: 59 years) entered into the prospective AMLSG 09-09 treatment trial. Most commonly co-mutated genes were DNMT3A (49.8%), FLT3-TKD (25.9%), PTPN11 (24.8%), NRAS (22.7%), TET2 (21.7%), IDH2 (21.3%), IDH1 (18%), and FLT3-ITD (17.3%). MRG mutations were identified in 18.1% of cases (18-60 years: 9.8%; >60 years: 28.7%). When focusing on the 470 patients with 2022 ELN favorable-risk NPM1 mut AML, multivariable analysis for event-free survival (EFS) identified age (p < 0.001), DNMT3A R882 (p < 0.001), IDH1 (p = 0.007), and MRG mutations (p = 0.03) as unfavorable factors, cohesin gene co-mutations (p = 0.001) and treatment with gemtuzumab ozogamicin (p = 0.007) as favorable factors. Restricting the analysis to a subset of CR/CRi patients with available data on NPM1 mut measurable residual disease (MRD) status in blood post cycle 2 in the model, MRG mutations lost their significant effect, whereas DNMT3A R882, MYC, and cohesin gene mutations retained the adverse and favorable effects. For OS, age (p < 0.001), DNMT3A R882 (p = 0.042), IDH1 (p = 0.045), and KRAS (0.003) mutations were unfavorable factors, sole favorable factor was IDH2 co-mutation (p = 0.037). In 2022 ELN favorable-risk NPM1 mut AML, MRG mutations are associated with inferior EFS; however, this effect is no longer present when considering NPM1 mut MRD status post cycle 2; DNMT3A R882 and MYC mutations remained adverse, and cohesin gene mutations favorable prognostic factors independent of the NPM1 mut MRD status.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Saadati, Maral
|0 P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74
|b 1
|u dkfz
700 1 _ |a Weiß, Nina
|b 2
700 1 _ |a Späth, Daniela
|b 3
700 1 _ |a Kapp-Schwoerer, Silke
|b 4
700 1 _ |a Schneider, Isabelle
|b 5
700 1 _ |a Meid, Annika
|b 6
700 1 _ |a Gaidzik, Verena I
|b 7
700 1 _ |a Skambraks, Sabrina
|b 8
700 1 _ |a Fiedler, Walter
|b 9
700 1 _ |a Kühn, Michael W M
|b 10
700 1 _ |a Germing, Ulrich
|b 11
700 1 _ |a Mayer, Karin T
|b 12
700 1 _ |a Lübbert, Michael
|b 13
700 1 _ |a Papaemmanuil, Elli
|b 14
700 1 _ |a Thol, Felicitas
|b 15
700 1 _ |a Heuser, Michael
|b 16
700 1 _ |a Ganser, Arnold
|b 17
700 1 _ |a Bullinger, Lars
|b 18
700 1 _ |a Benner, Axel
|0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|b 19
|u dkfz
700 1 _ |a Döhner, Hartmut
|b 20
700 1 _ |a Döhner, Konstanze
|0 0000-0002-2261-9862
|b 21
773 _ _ |a 10.1002/hem3.70060
|g Vol. 9, no. 1, p. e70060
|0 PERI:(DE-600)2922183-3
|n 1
|p e70060
|t HemaSphere
|v 9
|y 2025
|x 2572-9241
909 C O |o oai:inrepo02.dkfz.de:297977
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HEMASPHERE : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-26T06:26:50Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-26T06:26:50Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Double anonymous peer review
|d 2024-08-26T06:26:50Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b HEMASPHERE : 2022
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21