001     298182
005     20250123163406.0
024 7 _ |a 10.1007/s12021-024-09703-4
|2 doi
024 7 _ |a pmid:39841291
|2 pmid
024 7 _ |a 1539-2791
|2 ISSN
024 7 _ |a 1559-0089
|2 ISSN
037 _ _ |a DKFZ-2025-00201
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Pham, S. D. T.
|b 0
245 _ _ |a Blood Flow Velocity Analysis in Cerebral Perforating Arteries on 7T 2D Phase Contrast MRI with an Open-Source Software Tool (SELMA).
260 _ _ |a New York, NY
|c 2025
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737642313_15189
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Blood flow velocity in the cerebral perforating arteries can be quantified in a two-dimensional plane with phase contrast magnetic imaging (2D PC-MRI). The velocity pulsatility index (PI) can inform on the stiffness of these perforating arteries, which is related to several cerebrovascular diseases. Currently, there is no open-source analysis tool for 2D PC-MRI data from these small vessels, impeding the usage of these measurements. In this study we present the Small vessEL MArker (SELMA) analysis software as a novel, user-friendly, open-source tool for velocity analysis in cerebral perforating arteries. The implementation of the analysis algorithm in SELMA was validated against previously published data with a Bland-Altman analysis. The inter-rater reliability of SELMA was assessed on PC-MRI data of sixty participants from three MRI vendors between eight different sites. The mean velocity (vmean) and velocity PI of SELMA was very similar to the original results (vmean: mean difference ± standard deviation: 0.1 ± 0.8 cm/s; velocity PI: mean difference ± standard deviation: 0.01 ± 0.1) despite the slightly higher number of detected vessels in SELMA (Ndetected: mean difference ± standard deviation: 4 ± 9 vessels), which can be explained by the vessel selection paradigm of SELMA. The Dice Similarity Coefficient of drawn regions of interest between two operators using SELMA was 0.91 (range 0.69-0.95) and the overall intra-class coefficient for Ndetected, vmean, and velocity PI were 0.92, 0.84, and 0.85, respectively. The differences in the outcome measures was higher between sites than vendors, indicating the challenges in harmonizing the 2D PC-MRI sequence even across sites with the same vendor. We show that SELMA is a consistent and user-friendly analysis tool for small cerebral vessels.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a 2D PC-MRI
|2 Other
650 _ 7 |a Analysis tool
|2 Other
650 _ 7 |a Blood flow velocity
|2 Other
650 _ 7 |a Perforating arteries
|2 Other
650 _ 7 |a Pulsatility index
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Software
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Blood Flow Velocity: physiology
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Cerebrovascular Circulation: physiology
|2 MeSH
650 _ 2 |a Cerebral Arteries: diagnostic imaging
|2 MeSH
650 _ 2 |a Cerebral Arteries: physiology
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Reproducibility of Results
|2 MeSH
650 _ 2 |a Image Processing, Computer-Assisted: methods
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
700 1 _ |a Chatziantoniou, C.
|b 1
700 1 _ |a van Vliet, J. T.
|b 2
700 1 _ |a van Tuijl, R. J.
|b 3
700 1 _ |a Bulk, M.
|b 4
700 1 _ |a Costagli, M.
|b 5
700 1 _ |a de Rochefort, L.
|b 6
700 1 _ |a Kraff, O.
|b 7
700 1 _ |a Ladd, Mark
|0 P:(DE-He78)022611a2317e4de40fd912e0a72293a8
|b 8
|u dkfz
700 1 _ |a Pine, K.
|b 9
700 1 _ |a Ronen, I.
|b 10
700 1 _ |a Siero, J. C. W.
|b 11
700 1 _ |a Tosetti, M.
|b 12
700 1 _ |a Villringer, A.
|b 13
700 1 _ |a Biessels, G. J.
|b 14
700 1 _ |a Zwanenburg, J. J. M.
|b 15
773 _ _ |a 10.1007/s12021-024-09703-4
|g Vol. 23, no. 2, p. 11
|0 PERI:(DE-600)2099780-2
|n 2
|p 11
|t Neuroinformatics
|v 23
|y 2025
|x 1539-2791
909 C O |o oai:inrepo02.dkfz.de:298182
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)022611a2317e4de40fd912e0a72293a8
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROINFORMATICS : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-06
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21