000298186 001__ 298186
000298186 005__ 20250831022345.0
000298186 0247_ $$2doi$$a10.1111/php.14059
000298186 0247_ $$2pmid$$apmid:39838721
000298186 0247_ $$2ISSN$$a0031-8655
000298186 0247_ $$2ISSN$$a1751-1097
000298186 0247_ $$2altmetric$$aaltmetric:176165801
000298186 037__ $$aDKFZ-2025-00205
000298186 041__ $$aEnglish
000298186 082__ $$a540
000298186 1001_ $$00000-0002-6757-2084$$aYukuyama, Megumi Nishitani$$b0
000298186 245__ $$aComparative study of ergosterol and 7-dehydrocholesterol and their endoperoxides: Generation, identification, and impact in phospholipid membranes and melanoma cells.
000298186 260__ $$aMalden, Mass.$$bWiley-Blackwell$$c2025
000298186 3367_ $$2DRIVER$$aarticle
000298186 3367_ $$2DataCite$$aOutput Types/Journal article
000298186 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756292135_16146
000298186 3367_ $$2BibTeX$$aARTICLE
000298186 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000298186 3367_ $$00$$2EndNote$$aJournal Article
000298186 500__ $$a2025 Jul-Aug;101(4):960-978
000298186 520__ $$aMelanoma is an aggressive cancer that has attracted attention in recent years due to its high mortality rate of 80%. Damage caused by oxidative stress generated by radical (type I reaction) and singlet oxygen, 1O2 (type II reaction) oxidative reactions may induce cancer. Thus, studies that aim to unveil the mechanism that drives these oxidative damage processes become relevant. Ergosterol, an analogue of 7-dehydrocholesterol, important in the structure of cell membranes, is widely explored in cancer treatment. However, to date little is known about the impact of different oxidative reactions on these sterols in melanoma treatment, and conflicting results about their effectiveness complicates the understanding of their role in oxidative damage. Our results highlight differences among ergosterol, 7-dehydrocholesterol (7-DHC), and cholesterol in membrane properties when subjected to distinct oxidative reactions. Furthermore, we conducted a comparative study exploring the mechanisms of cell damage by photodynamic treatment in A375 melanoma. Notably, endoperoxides from ergosterol and 7-DHC generated by 1O2 showed superior efficacy in reducing the viability of A375 cells compared to their precursor molecules. We also describe a step-by-step process to produce and identify endoperoxides derived from ergosterol and 7-DHC. While further studies are needed, this work provides new insights for understanding cancer cell death induced by different oxidative reactions in the presence of biologically relevant sterols.
000298186 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000298186 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000298186 650_7 $$2Other$$a7‐dehydrocholesterol
000298186 650_7 $$2Other$$aendoperoxide
000298186 650_7 $$2Other$$aergosterol
000298186 650_7 $$2Other$$amelanoma
000298186 650_7 $$2Other$$aphotodynamic therapy
000298186 650_7 $$2Other$$aphotooxidation
000298186 650_7 $$2Other$$asinglet oxygen
000298186 7001_ $$aFabiano, Karen Campos$$b1
000298186 7001_ $$aInague, Alex$$b2
000298186 7001_ $$aUemi, Miriam$$b3
000298186 7001_ $$aLima, Rodrigo Santiago$$b4
000298186 7001_ $$aDiniz, Larissa Regina$$b5
000298186 7001_ $$aOliveira, Tiago Eugenio$$b6
000298186 7001_ $$aIijima, Thais Satie$$b7
000298186 7001_ $$aFaria, Hector Oreliana Fernandes$$b8
000298186 7001_ $$aSantos, Rosangela Silva$$b9
000298186 7001_ $$aNolf, Maria Fernanda Valente$$b10
000298186 7001_ $$0P:(DE-HGF)0$$aChaves-Filho, Adriano Brito$$b11
000298186 7001_ $$aYoshinaga, Marcos Yukio$$b12
000298186 7001_ $$aJunqueira, Helena Couto$$b13
000298186 7001_ $$aDi Mascio, Paolo$$b14
000298186 7001_ $$aBaptista, Mauricio da Silva$$b15
000298186 7001_ $$aMiyamoto, Sayuri$$b16
000298186 773__ $$0PERI:(DE-600)2048860-9$$a10.1111/php.14059$$gp. php.14059$$n4$$p960-978$$tPhotochemistry and photobiology$$v101$$x0031-8655$$y2025
000298186 909CO $$ooai:inrepo02.dkfz.de:298186$$pVDB
000298186 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000298186 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000298186 9141_ $$y2025
000298186 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-12$$wger
000298186 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-12$$wger
000298186 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
000298186 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
000298186 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
000298186 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-12
000298186 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-12
000298186 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-12
000298186 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-12
000298186 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-12
000298186 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
000298186 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHOTOCHEM PHOTOBIOL : 2022$$d2024-12-12
000298186 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12
000298186 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12
000298186 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-12
000298186 9201_ $$0I:(DE-He78)A410-20160331$$kA410$$lMetabolismus und Microenvironment$$x0
000298186 980__ $$ajournal
000298186 980__ $$aVDB
000298186 980__ $$aI:(DE-He78)A410-20160331
000298186 980__ $$aUNRESTRICTED