001     298186
005     20250831022345.0
024 7 _ |a 10.1111/php.14059
|2 doi
024 7 _ |a pmid:39838721
|2 pmid
024 7 _ |a 0031-8655
|2 ISSN
024 7 _ |a 1751-1097
|2 ISSN
024 7 _ |a altmetric:176165801
|2 altmetric
037 _ _ |a DKFZ-2025-00205
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Yukuyama, Megumi Nishitani
|0 0000-0002-6757-2084
|b 0
245 _ _ |a Comparative study of ergosterol and 7-dehydrocholesterol and their endoperoxides: Generation, identification, and impact in phospholipid membranes and melanoma cells.
260 _ _ |a Malden, Mass.
|c 2025
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756292135_16146
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2025 Jul-Aug;101(4):960-978
520 _ _ |a Melanoma is an aggressive cancer that has attracted attention in recent years due to its high mortality rate of 80%. Damage caused by oxidative stress generated by radical (type I reaction) and singlet oxygen, 1O2 (type II reaction) oxidative reactions may induce cancer. Thus, studies that aim to unveil the mechanism that drives these oxidative damage processes become relevant. Ergosterol, an analogue of 7-dehydrocholesterol, important in the structure of cell membranes, is widely explored in cancer treatment. However, to date little is known about the impact of different oxidative reactions on these sterols in melanoma treatment, and conflicting results about their effectiveness complicates the understanding of their role in oxidative damage. Our results highlight differences among ergosterol, 7-dehydrocholesterol (7-DHC), and cholesterol in membrane properties when subjected to distinct oxidative reactions. Furthermore, we conducted a comparative study exploring the mechanisms of cell damage by photodynamic treatment in A375 melanoma. Notably, endoperoxides from ergosterol and 7-DHC generated by 1O2 showed superior efficacy in reducing the viability of A375 cells compared to their precursor molecules. We also describe a step-by-step process to produce and identify endoperoxides derived from ergosterol and 7-DHC. While further studies are needed, this work provides new insights for understanding cancer cell death induced by different oxidative reactions in the presence of biologically relevant sterols.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a 7‐dehydrocholesterol
|2 Other
650 _ 7 |a endoperoxide
|2 Other
650 _ 7 |a ergosterol
|2 Other
650 _ 7 |a melanoma
|2 Other
650 _ 7 |a photodynamic therapy
|2 Other
650 _ 7 |a photooxidation
|2 Other
650 _ 7 |a singlet oxygen
|2 Other
700 1 _ |a Fabiano, Karen Campos
|b 1
700 1 _ |a Inague, Alex
|b 2
700 1 _ |a Uemi, Miriam
|b 3
700 1 _ |a Lima, Rodrigo Santiago
|b 4
700 1 _ |a Diniz, Larissa Regina
|b 5
700 1 _ |a Oliveira, Tiago Eugenio
|b 6
700 1 _ |a Iijima, Thais Satie
|b 7
700 1 _ |a Faria, Hector Oreliana Fernandes
|b 8
700 1 _ |a Santos, Rosangela Silva
|b 9
700 1 _ |a Nolf, Maria Fernanda Valente
|b 10
700 1 _ |a Chaves-Filho, Adriano Brito
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Yoshinaga, Marcos Yukio
|b 12
700 1 _ |a Junqueira, Helena Couto
|b 13
700 1 _ |a Di Mascio, Paolo
|b 14
700 1 _ |a Baptista, Mauricio da Silva
|b 15
700 1 _ |a Miyamoto, Sayuri
|b 16
773 _ _ |a 10.1111/php.14059
|g p. php.14059
|0 PERI:(DE-600)2048860-9
|n 4
|p 960-978
|t Photochemistry and photobiology
|v 101
|y 2025
|x 0031-8655
909 C O |p VDB
|o oai:inrepo02.dkfz.de:298186
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHOTOCHEM PHOTOBIOL : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-12
920 1 _ |0 I:(DE-He78)A410-20160331
|k A410
|l Metabolismus und Microenvironment
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A410-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21