000298224 001__ 298224 000298224 005__ 20250311152308.0 000298224 0247_ $$2doi$$a10.1016/j.mri.2025.110333 000298224 0247_ $$2pmid$$apmid:39863025 000298224 0247_ $$2ISSN$$a0730-725X 000298224 0247_ $$2ISSN$$a1873-5894 000298224 037__ $$aDKFZ-2025-00231 000298224 041__ $$aEnglish 000298224 082__ $$a610 000298224 1001_ $$aRomig, Swantje$$b0 000298224 245__ $$aImproving MRI turbulence quantification by addressing the measurement errors caused by the derivatives of the turbulent velocity field - Sequence development and in-vitro validation. 000298224 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025 000298224 3367_ $$2DRIVER$$aarticle 000298224 3367_ $$2DataCite$$aOutput Types/Journal article 000298224 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1741702960_12600 000298224 3367_ $$2BibTeX$$aARTICLE 000298224 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000298224 3367_ $$00$$2EndNote$$aJournal Article 000298224 500__ $$aVolume 117, April 2025, 110333 000298224 520__ $$aTo improve the current method for MRI turbulence quantification which is the intravoxel phase dispersion (IVPD) method. Turbulence is commonly characterized by the Reynolds stress tensor (RST) which describes the velocity covariance matrix. A major source for systematic errors in MRI is the sequence's sensitivity to the variance of the derivatives of velocity, such as the acceleration variance, which can lead to a substantial measurement bias.We developed a Cartesian phase contrast sequence with fast velocity encoding and two separately measured partial echoes with opposite readout directions. This design aims to reduce the high-order gradient moments that are responsible for the described measurement error. Velocity encoding directions follow the ICOSA6 scheme to capture the full RST. Turbulence data is reconstructed using the intra-voxel phase dispersion (IVPD) technique. We validated this sequence in vitro using a periodic hill flow benchmark with highly anisotropic turbulence. MRI data underwent extensive averaging, with multiple velocity encoding values employed to reduce noise and isolate systematic effects.The RST data obtained from the new sequence agree well with the ground truth. Compared to a state-of-the-art sequence, the maximum errors were reduced by factor five.Simple adjustments to current MRI protocols can greatly enhance turbulence measurement accuracy through the reduction of high-order gradient moments. The proposed measures include applying fast velocity encoding, high readout bandwidth, and a highly asymmetric readout. Ringing artifacts due to the asymmetric readout can be removed via a second, inverted readout. 000298224 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0 000298224 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de 000298224 650_7 $$2Other$$aIntra-voxel phase dispersion 000298224 650_7 $$2Other$$aPhase contrast MRI 000298224 650_7 $$2Other$$aReynold stress tensor 000298224 650_7 $$2Other$$aTurbulence kinetic energy 000298224 650_7 $$2Other$$aTurbulence quantification 000298224 7001_ $$aJohn, Kristine$$b1 000298224 7001_ $$0P:(DE-He78)549e123a16abe980dac951ef402f70ec$$aSchmidt, Simon$$b2$$udkfz 000298224 7001_ $$aSchmitter, Sebastian$$b3 000298224 7001_ $$aGrundmann, Sven$$b4 000298224 7001_ $$aBruschewski, Martin$$b5 000298224 773__ $$0PERI:(DE-600)1500646-3$$a10.1016/j.mri.2025.110333$$gp. 110333 -$$p110333$$tMagnetic resonance imaging$$v117$$x0730-725X$$y2025 000298224 909CO $$ooai:inrepo02.dkfz.de:298224$$pVDB 000298224 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)549e123a16abe980dac951ef402f70ec$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ 000298224 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0 000298224 9141_ $$y2025 000298224 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-20$$wger 000298224 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON IMAGING : 2022$$d2024-12-20 000298224 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20 000298224 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20 000298224 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20 000298224 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20 000298224 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20 000298224 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20 000298224 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-20 000298224 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20 000298224 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20 000298224 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-20 000298224 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0 000298224 980__ $$ajournal 000298224 980__ $$aVDB 000298224 980__ $$aI:(DE-He78)E020-20160331 000298224 980__ $$aUNRESTRICTED