001     298224
005     20250311152308.0
024 7 _ |a 10.1016/j.mri.2025.110333
|2 doi
024 7 _ |a pmid:39863025
|2 pmid
024 7 _ |a 0730-725X
|2 ISSN
024 7 _ |a 1873-5894
|2 ISSN
037 _ _ |a DKFZ-2025-00231
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Romig, Swantje
|b 0
245 _ _ |a Improving MRI turbulence quantification by addressing the measurement errors caused by the derivatives of the turbulent velocity field - Sequence development and in-vitro validation.
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1741702960_12600
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Volume 117, April 2025, 110333
520 _ _ |a To improve the current method for MRI turbulence quantification which is the intravoxel phase dispersion (IVPD) method. Turbulence is commonly characterized by the Reynolds stress tensor (RST) which describes the velocity covariance matrix. A major source for systematic errors in MRI is the sequence's sensitivity to the variance of the derivatives of velocity, such as the acceleration variance, which can lead to a substantial measurement bias.We developed a Cartesian phase contrast sequence with fast velocity encoding and two separately measured partial echoes with opposite readout directions. This design aims to reduce the high-order gradient moments that are responsible for the described measurement error. Velocity encoding directions follow the ICOSA6 scheme to capture the full RST. Turbulence data is reconstructed using the intra-voxel phase dispersion (IVPD) technique. We validated this sequence in vitro using a periodic hill flow benchmark with highly anisotropic turbulence. MRI data underwent extensive averaging, with multiple velocity encoding values employed to reduce noise and isolate systematic effects.The RST data obtained from the new sequence agree well with the ground truth. Compared to a state-of-the-art sequence, the maximum errors were reduced by factor five.Simple adjustments to current MRI protocols can greatly enhance turbulence measurement accuracy through the reduction of high-order gradient moments. The proposed measures include applying fast velocity encoding, high readout bandwidth, and a highly asymmetric readout. Ringing artifacts due to the asymmetric readout can be removed via a second, inverted readout.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Intra-voxel phase dispersion
|2 Other
650 _ 7 |a Phase contrast MRI
|2 Other
650 _ 7 |a Reynold stress tensor
|2 Other
650 _ 7 |a Turbulence kinetic energy
|2 Other
650 _ 7 |a Turbulence quantification
|2 Other
700 1 _ |a John, Kristine
|b 1
700 1 _ |a Schmidt, Simon
|0 P:(DE-He78)549e123a16abe980dac951ef402f70ec
|b 2
|u dkfz
700 1 _ |a Schmitter, Sebastian
|b 3
700 1 _ |a Grundmann, Sven
|b 4
700 1 _ |a Bruschewski, Martin
|b 5
773 _ _ |a 10.1016/j.mri.2025.110333
|g p. 110333 -
|0 PERI:(DE-600)1500646-3
|p 110333
|t Magnetic resonance imaging
|v 117
|y 2025
|x 0730-725X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:298224
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)549e123a16abe980dac951ef402f70ec
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-20
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON IMAGING : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-20
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21