000298227 001__ 298227
000298227 005__ 20250522134917.0
000298227 0247_ $$2doi$$a10.1038/s41366-025-01721-9
000298227 0247_ $$2pmid$$apmid:39856244
000298227 0247_ $$2ISSN$$a0307-0565
000298227 0247_ $$2ISSN$$a1476-5497
000298227 0247_ $$2altmetric$$aaltmetric:173469126
000298227 037__ $$aDKFZ-2025-00234
000298227 041__ $$aEnglish
000298227 082__ $$a610
000298227 1001_ $$00000-0002-1120-1751$$aStein, Michael J$$b0
000298227 245__ $$aDiurnal timing of physical activity in relation to obesity and diabetes in the German National Cohort (NAKO).
000298227 260__ $$aAvenel, NJ$$bNature Publ. Group$$c2025
000298227 3367_ $$2DRIVER$$aarticle
000298227 3367_ $$2DataCite$$aOutput Types/Journal article
000298227 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1747914504_12675
000298227 3367_ $$2BibTeX$$aARTICLE
000298227 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000298227 3367_ $$00$$2EndNote$$aJournal Article
000298227 500__ $$a49, pages 921–930 (2025)
000298227 520__ $$aPhysical activity supports weight regulation and metabolic health, but its timing in relation to obesity and diabetes remains unclear. We aimed to assess the diurnal timing of physical activity and its association with obesity and diabetes.We cross-sectionally analyzed hip-worn accelerometry data from 61,116 participants aged 20-75 in the German National Cohort between 2015 and 2019. We divided physical activity into sex- and age-standardized quartiles of total morning (06:00-11:59), afternoon (12:00-17:59), evening (18:00-23:59), and nighttime (00:00-06:00) physical activity. Using multivariable logistic regression, we estimated associations of physical activity timing with obesity (BMI ≥ 30.0 kg/m2) and diabetes (self-reported or HbA1c ≥ 6.5%). We accounted for sex, age, study region, education, employment, risky alcohol use, smoking, night shift work, and sleep duration.High afternoon (top vs. bottom quartile, OR: 0.36, 95% CI: 0.33-0.38) and evening physical activity (OR: 0.45, 95% CI: 0.42-0.48) showed lower obesity odds than high morning activity (OR: 0.71, 95% CI: 0.66-0.76), whereas nighttime activity increased obesity odds (OR: 1.58, 95% CI: 1.48-1.68). Associations were similar for diabetes, with the lowest odds for afternoon (OR: 0.47, 95% CI: 0.42-0.53), followed by evening (OR: 0.56, 95% CI: 0.50-0.62) and morning activity (OR: 0.80, 95% CI: 0.71-0.89), and higher odds for nighttime activity (OR: 1.43, 95% CI: 1.29-1.58). Findings were not modified by employment status, night shift work, and sleep duration.Our cross-sectional findings require longitudinal corroboration but suggest afternoon and evening activity provide greater metabolic health benefits than morning activity, while nighttime activity is discouraged.
000298227 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000298227 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000298227 7001_ $$aWeber, Andrea$$b1
000298227 7001_ $$aBamberg, Fabian$$b2
000298227 7001_ $$00000-0002-9265-5594$$aBaurecht, Hansjörg$$b3
000298227 7001_ $$aBerger, Klaus$$b4
000298227 7001_ $$aBohmann, Patricia$$b5
000298227 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b6$$udkfz
000298227 7001_ $$0P:(DE-He78)90a88c3c3b6a26094e939107c3862b7f$$aBrummer, Julian$$b7$$udkfz
000298227 7001_ $$aDörr, Marcus$$b8
000298227 7001_ $$aFischer, Beate$$b9
000298227 7001_ $$aGastell, Sylvia$$b10
000298227 7001_ $$0P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b$$aGreiser, Karin-Halina$$b11$$udkfz
000298227 7001_ $$aHarth, Volker$$b12
000298227 7001_ $$00000-0001-7354-5958$$aHebestreit, Antje$$b13
000298227 7001_ $$aHeise, Jana-Kristin$$b14
000298227 7001_ $$0P:(DE-He78)63e25168359ecc68156e34417d75d0a7$$aHerbolsheimer, Florian$$b15$$udkfz
000298227 7001_ $$aIttermann, Till$$b16
000298227 7001_ $$aKarch, André$$b17
000298227 7001_ $$aKeil, Thomas$$b18
000298227 7001_ $$aKluttig, Alexander$$b19
000298227 7001_ $$aKrist, Lilian$$b20
000298227 7001_ $$aMichels, Karin B$$b21
000298227 7001_ $$aMikolajczyk, Rafael$$b22
000298227 7001_ $$00000-0002-6678-7964$$aNauck, Matthias$$b23
000298227 7001_ $$aNimptsch, Katharina$$b24
000298227 7001_ $$aObi, Nadia$$b25
000298227 7001_ $$00000-0003-1568-767X$$aPischon, Tobias$$b26
000298227 7001_ $$aPivovarova-Ramich, Olga$$b27
000298227 7001_ $$aSchikowski, Tamara$$b28
000298227 7001_ $$aSchmidt, Börge$$b29
000298227 7001_ $$00000-0002-0830-5277$$aSchulze, Matthias B$$b30
000298227 7001_ $$0P:(DE-He78)a0c2037d9054be26907a05ae520d5756$$aSteindorf, Karen$$b31$$udkfz
000298227 7001_ $$00000-0001-7417-4407$$aZylla, Stephanie$$b32
000298227 7001_ $$aLeitzmann, Michael F$$b33
000298227 773__ $$0PERI:(DE-600)2101927-7$$a10.1038/s41366-025-01721-9$$p921–930$$tInternational journal of obesity$$v49$$x0307-0565$$y2025
000298227 909CO $$ooai:inrepo02.dkfz.de:298227$$pVDB
000298227 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000298227 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90a88c3c3b6a26094e939107c3862b7f$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000298227 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000298227 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)63e25168359ecc68156e34417d75d0a7$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ
000298227 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a0c2037d9054be26907a05ae520d5756$$aDeutsches Krebsforschungszentrum$$b31$$kDKFZ
000298227 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000298227 9141_ $$y2025
000298227 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2025-01-01$$wger
000298227 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J OBESITY : 2022$$d2025-01-01
000298227 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
000298227 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
000298227 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-01
000298227 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-01
000298227 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
000298227 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-01
000298227 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
000298227 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-01
000298227 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-01
000298227 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-01
000298227 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
000298227 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
000298227 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-01
000298227 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie der Krebsfrüherkennung$$x0
000298227 9201_ $$0I:(DE-He78)C110-20160331$$kC110$$lBewegung, Krebsprävention und Survivorship$$x1
000298227 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lEpidemiologie von Krebs$$x2
000298227 980__ $$ajournal
000298227 980__ $$aVDB
000298227 980__ $$aI:(DE-He78)C070-20160331
000298227 980__ $$aI:(DE-He78)C110-20160331
000298227 980__ $$aI:(DE-He78)C020-20160331
000298227 980__ $$aUNRESTRICTED