001     298227
005     20250522134917.0
024 7 _ |a 10.1038/s41366-025-01721-9
|2 doi
024 7 _ |a pmid:39856244
|2 pmid
024 7 _ |a 0307-0565
|2 ISSN
024 7 _ |a 1476-5497
|2 ISSN
024 7 _ |a altmetric:173469126
|2 altmetric
037 _ _ |a DKFZ-2025-00234
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Stein, Michael J
|0 0000-0002-1120-1751
|b 0
245 _ _ |a Diurnal timing of physical activity in relation to obesity and diabetes in the German National Cohort (NAKO).
260 _ _ |a Avenel, NJ
|c 2025
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747914504_12675
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 49, pages 921–930 (2025)
520 _ _ |a Physical activity supports weight regulation and metabolic health, but its timing in relation to obesity and diabetes remains unclear. We aimed to assess the diurnal timing of physical activity and its association with obesity and diabetes.We cross-sectionally analyzed hip-worn accelerometry data from 61,116 participants aged 20-75 in the German National Cohort between 2015 and 2019. We divided physical activity into sex- and age-standardized quartiles of total morning (06:00-11:59), afternoon (12:00-17:59), evening (18:00-23:59), and nighttime (00:00-06:00) physical activity. Using multivariable logistic regression, we estimated associations of physical activity timing with obesity (BMI ≥ 30.0 kg/m2) and diabetes (self-reported or HbA1c ≥ 6.5%). We accounted for sex, age, study region, education, employment, risky alcohol use, smoking, night shift work, and sleep duration.High afternoon (top vs. bottom quartile, OR: 0.36, 95% CI: 0.33-0.38) and evening physical activity (OR: 0.45, 95% CI: 0.42-0.48) showed lower obesity odds than high morning activity (OR: 0.71, 95% CI: 0.66-0.76), whereas nighttime activity increased obesity odds (OR: 1.58, 95% CI: 1.48-1.68). Associations were similar for diabetes, with the lowest odds for afternoon (OR: 0.47, 95% CI: 0.42-0.53), followed by evening (OR: 0.56, 95% CI: 0.50-0.62) and morning activity (OR: 0.80, 95% CI: 0.71-0.89), and higher odds for nighttime activity (OR: 1.43, 95% CI: 1.29-1.58). Findings were not modified by employment status, night shift work, and sleep duration.Our cross-sectional findings require longitudinal corroboration but suggest afternoon and evening activity provide greater metabolic health benefits than morning activity, while nighttime activity is discouraged.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Weber, Andrea
|b 1
700 1 _ |a Bamberg, Fabian
|b 2
700 1 _ |a Baurecht, Hansjörg
|0 0000-0002-9265-5594
|b 3
700 1 _ |a Berger, Klaus
|b 4
700 1 _ |a Bohmann, Patricia
|b 5
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 6
|u dkfz
700 1 _ |a Brummer, Julian
|0 P:(DE-He78)90a88c3c3b6a26094e939107c3862b7f
|b 7
|u dkfz
700 1 _ |a Dörr, Marcus
|b 8
700 1 _ |a Fischer, Beate
|b 9
700 1 _ |a Gastell, Sylvia
|b 10
700 1 _ |a Greiser, Karin-Halina
|0 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b
|b 11
|u dkfz
700 1 _ |a Harth, Volker
|b 12
700 1 _ |a Hebestreit, Antje
|0 0000-0001-7354-5958
|b 13
700 1 _ |a Heise, Jana-Kristin
|b 14
700 1 _ |a Herbolsheimer, Florian
|0 P:(DE-He78)63e25168359ecc68156e34417d75d0a7
|b 15
|u dkfz
700 1 _ |a Ittermann, Till
|b 16
700 1 _ |a Karch, André
|b 17
700 1 _ |a Keil, Thomas
|b 18
700 1 _ |a Kluttig, Alexander
|b 19
700 1 _ |a Krist, Lilian
|b 20
700 1 _ |a Michels, Karin B
|b 21
700 1 _ |a Mikolajczyk, Rafael
|b 22
700 1 _ |a Nauck, Matthias
|0 0000-0002-6678-7964
|b 23
700 1 _ |a Nimptsch, Katharina
|b 24
700 1 _ |a Obi, Nadia
|b 25
700 1 _ |a Pischon, Tobias
|0 0000-0003-1568-767X
|b 26
700 1 _ |a Pivovarova-Ramich, Olga
|b 27
700 1 _ |a Schikowski, Tamara
|b 28
700 1 _ |a Schmidt, Börge
|b 29
700 1 _ |a Schulze, Matthias B
|0 0000-0002-0830-5277
|b 30
700 1 _ |a Steindorf, Karen
|0 P:(DE-He78)a0c2037d9054be26907a05ae520d5756
|b 31
|u dkfz
700 1 _ |a Zylla, Stephanie
|0 0000-0001-7417-4407
|b 32
700 1 _ |a Leitzmann, Michael F
|b 33
773 _ _ |a 10.1038/s41366-025-01721-9
|0 PERI:(DE-600)2101927-7
|p 921–930
|t International journal of obesity
|v 49
|y 2025
|x 0307-0565
909 C O |p VDB
|o oai:inrepo02.dkfz.de:298227
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)90a88c3c3b6a26094e939107c3862b7f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)63e25168359ecc68156e34417d75d0a7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 31
|6 P:(DE-He78)a0c2037d9054be26907a05ae520d5756
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2025-01-01
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J OBESITY : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-01
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-01
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-01
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie der Krebsfrüherkennung
|x 0
920 1 _ |0 I:(DE-He78)C110-20160331
|k C110
|l Bewegung, Krebsprävention und Survivorship
|x 1
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebs
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C110-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21