000298229 001__ 298229
000298229 005__ 20250508113028.0
000298229 0247_ $$2doi$$a10.1093/bioadv/vbaf005
000298229 0247_ $$2pmid$$apmid:39867532
000298229 0247_ $$2pmc$$apmc:PMC11769677
000298229 0247_ $$2altmetric$$aaltmetric:173354052
000298229 037__ $$aDKFZ-2025-00236
000298229 041__ $$aEnglish
000298229 082__ $$a004
000298229 1001_ $$0P:(DE-He78)4a30d2e1484f972ad8dffc92a2533f97$$aSaßmannshausen, Zoe$$b0$$eFirst author$$udkfz
000298229 245__ $$aestiMAge: development of a DNA methylation clock to estimate the methylation age of single cells.
000298229 260__ $$aOxford$$bOxford University Press$$c2025
000298229 3367_ $$2DRIVER$$aarticle
000298229 3367_ $$2DataCite$$aOutput Types/Journal article
000298229 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737988059_29900
000298229 3367_ $$2BibTeX$$aARTICLE
000298229 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000298229 3367_ $$00$$2EndNote$$aJournal Article
000298229 500__ $$a#EA:A130#LA:A130# / DKFZ-ZMBH Alliance
000298229 520__ $$aSince their introduction about 10 years ago, methylation clocks have provided broad insights into the biological age of different species, tissues, and in the context of several diseases or aging. However, their application to single-cell methylation data remains a major challenge, because of the inherent sparsity of such data, as many CpG sites are not covered. A methylation clock applicable on single-cell level could help to further disentangle the processes that drive the ticking of epigenetic clocks.We have developed estiMAge ('estimation of Methylation Age'), a framework that exploits redundancy in methylation data to substitute missing CpGs of trained methylation clocks in single cells. Using Euclidean distance as a measure of similarity, we determine which CpGs covary with the required CpG sites of an epigenetic clock and can be used as surrogates for clock CpGs not covered in single-cell experiments. estiMAge is thus a tool that can be applied to standard epigenetic clocks built on elastic net regression, to achieve bulk and single-cell resolution. We show that estiMAge can accurately predict the ages of young and old hepatocytes and can be used to generate single-cell versions of publicly available epigenetic clocks.The source code and instructions for usage of estiMAge are available at https://github.com/DivEpigenetics/estiMAge.
000298229 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000298229 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000298229 7001_ $$0P:(DE-He78)2449c4a48168bc01d4117195867caf12$$aBlank, Lisa Marie$$b1
000298229 7001_ $$0P:(DE-HGF)0$$aSolé-Boldo, Llorenç$$b2
000298229 7001_ $$0P:(DE-He78)a8d53a8cdc716390a6cbacdead227143$$aLyko, Frank$$b3$$udkfz
000298229 7001_ $$0P:(DE-He78)e712dff472bccab611dd1641f262ea5a$$aRaddatz, Günter$$b4$$eLast author$$udkfz
000298229 773__ $$0PERI:(DE-600)3076075-6$$a10.1093/bioadv/vbaf005$$gVol. 5, no. 1, p. vbaf005$$n1$$pvbaf005$$tBioinformatics advances$$v5$$x2635-0041$$y2025
000298229 8767_ $$8SOA25LT000521$$92025-02-13$$d2025-05-08$$eAPC$$jZahlung erfolgt
000298229 909CO $$ooai:inrepo02.dkfz.de:298229$$pVDB$$pOpenAPC$$popenCost
000298229 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4a30d2e1484f972ad8dffc92a2533f97$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000298229 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2449c4a48168bc01d4117195867caf12$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000298229 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000298229 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a8d53a8cdc716390a6cbacdead227143$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000298229 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e712dff472bccab611dd1641f262ea5a$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000298229 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000298229 9141_ $$y2025
000298229 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
000298229 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
000298229 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-31T16:07:00Z
000298229 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-31T16:07:00Z
000298229 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-31T16:07:00Z
000298229 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-01-31T16:07:00Z
000298229 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
000298229 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-28
000298229 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
000298229 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-28
000298229 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-28
000298229 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-28
000298229 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-28
000298229 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000298229 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000298229 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000298229 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000298229 9202_ $$0I:(DE-He78)A130-20160331$$kA130$$lA130 Epigenetik$$x0
000298229 9200_ $$0I:(DE-He78)A130-20160331$$kA130$$lA130 Epigenetik$$x0
000298229 9201_ $$0I:(DE-He78)A130-20160331$$kA130$$lA130 Epigenetik$$x0
000298229 980__ $$ajournal
000298229 980__ $$aVDB
000298229 980__ $$aI:(DE-He78)A130-20160331
000298229 980__ $$aUNRESTRICTED
000298229 980__ $$aAPC